use rand_core::{RngCore, SeedableRng}; use rand_pcg::{Mcg128Xsl64, Pcg64Mcg}; #[test] fn test_mcg128xsl64_advancing() { for seed in 0..20 { let mut rng1 = Mcg128Xsl64::seed_from_u64(seed); let mut rng2 = rng1.clone(); for _ in 0..20 { rng1.next_u64(); } rng2.advance(20); assert_eq!(rng1, rng2); } } #[test] fn test_mcg128xsl64_construction() { // Test that various construction techniques produce a working RNG. let seed = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]; let mut rng1 = Mcg128Xsl64::from_seed(seed); assert_eq!(rng1.next_u64(), 7071994460355047496); let mut rng2 = Mcg128Xsl64::from_rng(&mut rng1); assert_eq!(rng2.next_u64(), 12300796107712034932); let mut rng3 = Mcg128Xsl64::seed_from_u64(0); assert_eq!(rng3.next_u64(), 6198063878555692194); // This is the same as Mcg128Xsl64, so we only have a single test: let mut rng4 = Pcg64Mcg::seed_from_u64(0); assert_eq!(rng4.next_u64(), 6198063878555692194); } #[test] fn test_mcg128xsl64_reference() { // Numbers copied from official test suite (C version). let mut rng = Mcg128Xsl64::new(42); let mut results = [0u64; 6]; for i in results.iter_mut() { *i = rng.next_u64(); } let expected: [u64; 6] = [ 0x63b4a3a813ce700a, 0x382954200617ab24, 0xa7fd85ae3fe950ce, 0xd715286aa2887737, 0x60c92fee2e59f32c, 0x84c4e96beff30017, ]; assert_eq!(results, expected); } #[cfg(feature = "serde")] #[test] fn test_mcg128xsl64_serde() { use bincode; use std::io::{BufReader, BufWriter}; let mut rng = Mcg128Xsl64::seed_from_u64(0); let buf: Vec = Vec::new(); let mut buf = BufWriter::new(buf); bincode::serialize_into(&mut buf, &rng).expect("Could not serialize"); let buf = buf.into_inner().unwrap(); let mut read = BufReader::new(&buf[..]); let mut deserialized: Mcg128Xsl64 = bincode::deserialize_from(&mut read).expect("Could not deserialize"); for _ in 0..16 { assert_eq!(rng.next_u64(), deserialized.next_u64()); } }