// SPDX-License-Identifier: (Apache-2.0 OR MIT) // Copyright 2017 Jan-Erik Rediger // // Adopted from tests in `tests/assembler.rs` extern crate rbpf; mod common; use rbpf::assembler::assemble; use rbpf::disassembler::to_insn_vec; // Using a macro to keep actual line numbers in failure output macro_rules! disasm { ($src:expr) => { { let src = $src; let asm = assemble(src).expect("Can't assemble from string"); let insn = to_insn_vec(&asm); let reasm = insn.into_iter().map(|ins| ins.desc).collect::>().join("\n"); assert_eq!(src, reasm); } } } #[test] fn test_empty() { disasm!(""); } // Example for InstructionType::NoOperand. #[test] fn test_exit() { disasm!("exit"); } // Example for InstructionType::AluBinary. #[test] fn test_add64() { disasm!("add64 r1, r3"); disasm!("add64 r1, 0x5"); } // Example for InstructionType::AluUnary. #[test] fn test_neg64() { disasm!("neg64 r1"); } // Example for InstructionType::LoadReg. #[test] fn test_ldxw() { disasm!("ldxw r1, [r2+0x5]"); } // Example for InstructionType::StoreImm. #[test] fn test_stw() { disasm!("stw [r2+0x5], 0x7"); } // Example for InstructionType::StoreReg. #[test] fn test_stxw() { disasm!("stxw [r2+0x5], r8"); } // Example for InstructionType::JumpUnconditional. #[test] fn test_ja() { disasm!("ja +0x8"); } // Example for InstructionType::JumpConditional. #[test] fn test_jeq() { disasm!("jeq r1, 0x4, +0x8"); disasm!("jeq r1, r3, +0x8"); } // Example for InstructionType::Call. #[test] fn test_call() { disasm!("call 0x3"); } // Example for InstructionType::Endian. #[test] fn test_be32() { disasm!("be32 r1"); } // Example for InstructionType::LoadImm. #[test] fn test_lddw() { disasm!("lddw r1, 0x1234abcd5678eeff"); disasm!("lddw r1, 0xff11ee22dd33cc44"); } // Example for InstructionType::LoadAbs. #[test] fn test_ldabsw() { disasm!("ldabsw 0x1"); } // Example for InstructionType::LoadInd. #[test] fn test_ldindw() { disasm!("ldindw r1, 0x2"); } // Example for InstructionType::LoadReg. #[test] fn test_ldxdw() { disasm!("ldxdw r1, [r2+0x3]"); } // Example for InstructionType::StoreImm. #[test] fn test_sth() { disasm!("sth [r1+0x2], 0x3"); } // Example for InstructionType::StoreReg. #[test] fn test_stxh() { disasm!("stxh [r1+0x2], r3"); } // Test all supported AluBinary mnemonics. #[test] fn test_alu_binary() { disasm!("add64 r1, r2 sub64 r1, r2 mul64 r1, r2 div64 r1, r2 or64 r1, r2 and64 r1, r2 lsh64 r1, r2 rsh64 r1, r2 mod64 r1, r2 xor64 r1, r2 mov64 r1, r2 arsh64 r1, r2"); disasm!("add64 r1, 0x2 sub64 r1, 0x2 mul64 r1, 0x2 div64 r1, 0x2 or64 r1, 0x2 and64 r1, 0x2 lsh64 r1, 0x2 rsh64 r1, 0x2 mod64 r1, 0x2 xor64 r1, 0x2 mov64 r1, 0x2 arsh64 r1, 0x2"); disasm!("add32 r1, r2 sub32 r1, r2 mul32 r1, r2 div32 r1, r2 or32 r1, r2 and32 r1, r2 lsh32 r1, r2 rsh32 r1, r2 mod32 r1, r2 xor32 r1, r2 mov32 r1, r2 arsh32 r1, r2"); disasm!("add32 r1, 0x2 sub32 r1, 0x2 mul32 r1, 0x2 div32 r1, 0x2 or32 r1, 0x2 and32 r1, 0x2 lsh32 r1, 0x2 rsh32 r1, 0x2 mod32 r1, 0x2 xor32 r1, 0x2 mov32 r1, 0x2 arsh32 r1, 0x2"); } // Test all supported AluUnary mnemonics. #[test] fn test_alu_unary() { disasm!("neg64 r1 neg32 r1"); } // Test all supported LoadAbs mnemonics. #[test] fn test_load_abs() { disasm!("ldabsw 0x1 ldabsh 0x1 ldabsb 0x1 ldabsdw 0x1"); } // Test all supported LoadInd mnemonics. #[test] fn test_load_ind() { disasm!("ldindw r1, 0x2 ldindh r1, 0x2 ldindb r1, 0x2 ldinddw r1, 0x2"); } // Test all supported LoadReg mnemonics. #[test] fn test_load_reg() { disasm!(r"ldxw r1, [r2+0x3] ldxh r1, [r2+0x3] ldxb r1, [r2+0x3] ldxdw r1, [r2+0x3]"); } // Test all supported StoreImm mnemonics. #[test] fn test_store_imm() { disasm!("stw [r1+0x2], 0x3 sth [r1+0x2], 0x3 stb [r1+0x2], 0x3 stdw [r1+0x2], 0x3"); } // Test all supported StoreReg mnemonics. #[test] fn test_store_reg() { disasm!("stxw [r1+0x2], r3 stxh [r1+0x2], r3 stxb [r1+0x2], r3 stxdw [r1+0x2], r3"); } // Test all supported JumpConditional mnemonics. #[test] fn test_jump_conditional() { disasm!("jeq r1, r2, +0x3 jgt r1, r2, +0x3 jge r1, r2, +0x3 jlt r1, r2, +0x3 jle r1, r2, +0x3 jset r1, r2, +0x3 jne r1, r2, +0x3 jsgt r1, r2, +0x3 jsge r1, r2, -0x3 jslt r1, r2, +0x3 jsle r1, r2, -0x3"); disasm!("jeq r1, 0x2, +0x3 jgt r1, 0x2, +0x3 jge r1, 0x2, +0x3 jlt r1, 0x2, +0x3 jle r1, 0x2, +0x3 jset r1, 0x2, +0x3 jne r1, 0x2, +0x3 jsgt r1, 0x2, +0x3 jsge r1, 0x2, -0x3 jslt r1, 0x2, +0x3 jsle r1, 0x2, -0x3"); disasm!("jeq32 r1, r2, +0x3 jgt32 r1, r2, +0x3 jge32 r1, r2, +0x3 jlt32 r1, r2, +0x3 jle32 r1, r2, +0x3 jset32 r1, r2, +0x3 jne32 r1, r2, +0x3 jsgt32 r1, r2, +0x3 jsge32 r1, r2, -0x3 jslt32 r1, r2, +0x3 jsle32 r1, r2, -0x3"); disasm!("jeq32 r1, 0x2, +0x3 jgt32 r1, 0x2, +0x3 jge32 r1, 0x2, +0x3 jlt32 r1, 0x2, +0x3 jle32 r1, 0x2, +0x3 jset32 r1, 0x2, +0x3 jne32 r1, 0x2, +0x3 jsgt32 r1, 0x2, +0x3 jsge32 r1, 0x2, -0x3 jslt32 r1, 0x2, +0x3 jsle32 r1, 0x2, -0x3"); } // Test all supported Endian mnemonics. #[test] fn test_endian() { disasm!("be16 r1 be32 r1 be64 r1 le16 r1 le32 r1 le64 r1"); } #[test] fn test_large_immediate() { disasm!("add64 r1, 0x7fffffff"); disasm!("add64 r1, 0x7fffffff"); } // Non-regression tests for overflow when trying to negate offset 0x8000i16. #[test] fn test_offset_overflow() { let insns = [ 0x62, 0x01, 0x00, 0x80, 0x01, 0x00, 0x00, 0x00, // stw 0x6a, 0x01, 0x00, 0x80, 0x01, 0x00, 0x00, 0x00, // sth 0x72, 0x01, 0x00, 0x80, 0x01, 0x00, 0x00, 0x00, // stb 0x7a, 0x01, 0x00, 0x80, 0x01, 0x00, 0x00, 0x00, // stdw 0x61, 0x01, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, // ldxw 0x69, 0x01, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, // ldxh 0x71, 0x01, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, // ldxb 0x79, 0x01, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, // ldxdw 0x15, 0x01, 0x00, 0x80, 0x02, 0x00, 0x00, 0x00, // jeq (imm) 0x1d, 0x21, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, // jeq (reg) 0x16, 0x01, 0x00, 0x80, 0x02, 0x00, 0x00, 0x00, // jeq32 (imm) 0x1e, 0x21, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, // jeq32 (reg) ]; let expected_output = "stw [r1-0x8000], 0x1 sth [r1-0x8000], 0x1 stb [r1-0x8000], 0x1 stdw [r1-0x8000], 0x1 ldxw r1, [r0-0x8000] ldxh r1, [r0-0x8000] ldxb r1, [r0-0x8000] ldxdw r1, [r0-0x8000] jeq r1, 0x2, -0x8000 jeq r1, r2, -0x8000 jeq32 r1, 0x2, -0x8000 jeq32 r1, r2, -0x8000"; let prog = to_insn_vec(&insns); let asm = prog.into_iter().map(|ins| ins.desc).collect::>().join("\n"); assert_eq!(asm, expected_output); }