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Abstract—Read-copy update (RCU) is a synchronization technique that often replaces reader-writer locking because RCU’s read-side

primitives are both wait-free and an order of magnitude faster than uncontended locking. Although RCU updates are relatively heavy

weight, the importance of read-side performance is increasing as computing systems become more responsive to changes in their

environments. RCU is heavily used in several kernel-level environments. Unfortunately, kernel-level implementations use facilities that

are often unavailable to user applications. The few prior user-level RCU implementations either provided inefficient read-side primitives

or restricted the application architecture. This paper fills this gap by describing efficient and flexible RCU implementations based on

primitives commonly available to user-level applications. Finally, this paper compares these RCU implementations with each other and

with standard locking, which enables choosing the best mechanism for a given workload. This work opens the door to widespread

user-application use of RCU.

Index Terms—Synchronization, process management, operating systems, software/software engineering, threads, concurrency.
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1 INTRODUCTION

READ-COPY update (RCU) is a synchronization technique
that was added to the Linux kernel in October of 2002.

In contrast with conventional locking techniques that
ensure mutual exclusion among all threads, or with
reader-writer locks that allow readers to proceed concur-
rently with each other, but not with updaters, RCU permits
both readers and updaters to make concurrent forward
progress. RCU ensures that reads are coherent by main-
taining multiple versions of objects and ensuring that each
version remains intact until the completion of all RCU
read-side critical sections that might reference that version.
RCU defines and uses efficient and scalable mechanisms
for publishing and reading new versions of an object and
for deferring reclamation of old versions. These mechan-
isms distribute the work between read and update paths so
as to make read paths extremely fast, typically more than
an order of magnitude faster than uncontended locking.
RCU’s light-weight read paths support the increasing need

to track read-mostly connectivity, hardware-configuration,
and security-policy data. Other mechanisms must be used
to coordinate among multiple writers, for example, lock-
ing, transactions, nonblocking synchronization, or single
designated updater thread.

Techniques similar to RCU have appeared in several
operating-system kernels [1], [2], [3], [4], [5], and, as shown
in Fig. 1, RCU is heavily used in the Linux kernel [6]. One
reason RCU is heavily used is that it eases lock-based
programming when the locks themselves are dynamically
created and destroyed, which occurs frequently in con-
current programs. However, RCU is not heavily used in
applications, in part because prior user-level RCU-like
algorithms severely constrained application design [7],
incurred heavy read-side overhead [8], [9], or relied on
sequential consistency and garbage collection [10], [11]. The
popularity of RCU in operating-system kernels owes much
to the fact that kernels can accommodate the global
constraints imposed by the high-performance quiescent-
state-based reclamation (QSBR) class of RCU implementa-
tions. QSBR implementations provide unmatched perfor-
mance and scalability for read-mostly data structures on
cache-coherent shared-memory multiprocessors [7], even
with weakly ordered hardware and compilers.

Whereas we cannot yet put forward a single user-level
RCU implementation that is ideal for all environments, the
three classes of RCU implementations described in this
paper should suffice for most user-level uses of RCU.

This paper is organized as follows: Section 2 first provides
a brief overview of RCU, with a definition of RCU semantics
in Appendix C in the Supplementary Material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.159. Then,
Section 3 describes user-level scenarios that could benefit
from RCU. This is followed by the presentation of three
classes of RCU implementation in Appendix D in the
Supplementary Material, which can be found on the Computer
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Society Digital Library. Section 5 presents experimental
results, comparing RCU implementations to each other and
to locking, and finally Section 6 presents conclusions and
recommendations.

2 BRIEF OVERVIEW OF RCU

This overview begins with an introduction to RCU
concepts in Section 2.1. Section 2.2 shows how to delete
an element from an RCU-protected linked list in spite of
concurrent readers. Appendix A in the Supplementary
Material, which can be found on the Computer Society
Digital Library, presents a list of informal RCU desiderata,
which details the goals pursued in this work. Appendix B
in the Supplementary Material, which can be found on the
Computer Society Digital Library, walks through an
example real-time use of RCU. Finally, Appendix C in
the Supplementary Material, which can be found on the
Computer Society Digital Library, gives a semiformal
description of RCU semantics, including guarantees that
allow RCU to operate correctly on systems that do not
provide sequential consistency.

2.1 Conceptual View of RCU Algorithms

RCU readers execute within RCU read-side critical sections.
Each such critical section begins with rcu_read_lock(),
ends with rcu_read_unlock(), and may contain
rcu_dereference() or equivalent functions that access
pointers to RCU-protected data structures. These pointer-
access functions implement the notion of a dependency-
ordered load, also known as a memory_order_consume

load [12], which suppresses aggressive code-motion
compiler optimizations and generates a simple load on
any system other than DEC Alpha, where it generates a
load followed by a memory-barrier instruction. The
performance benefits of RCU are due to the fact that
rcu_read_lock() and rcu_read_unlock() are ex-
ceedingly fast. In fact, Appendix D2 in the Supplementary
Material, which can be found on the Computer Society
Digital Library, shows how these two primitives can incur
exactly zero overhead, as they do in server-class Linux-
kernel builds [13].

When a thread is not in an RCU read-side critical section,
it is in a quiescent state. A quiescent state that persists for a
significant time period is an extended quiescent state. Any
time period during which every thread has been in at least
one quiescent state is a grace period; this implies that every
RCU read-side critical section that starts before a grace
period must end before that grace period does. Distinct
grace periods may overlap, either partially or completely.
Any time period that includes a grace period is by
definition itself a grace period [13], [14]. Each grace period
is guaranteed to complete as long as all read-side critical
sections are finite in duration; thus even a constant flow of
such critical sections is unable to extend an RCU grace
period indefinitely.

Suppose that readers enclose each of their data-structure
traversals in an RCU read-side critical section. If an updater
first removes an element from such a data structure and
then waits for a grace period, there can be no more readers
accessing that element. The updater can then carry out
destructive operations, for example, freeing the element,
without disturbing any readers. A high-level schematic of
such an RCU-based algorithm is shown in Fig. 2. Here, each
box labeled “reads” is an RCU read-side critical section.

Each row of read-side critical sections denotes a separate
thread, for a total of four read-side threads. The bottom
row of the figure denotes a fifth thread performing an RCU
update. This RCU update is split into two phases, a
removal phase on the lower left of the figure and a
reclamation phase on the lower right. These two phases
must be separated by a grace period, for example, via the
synchronize_rcu() primitive, which initiates a grace
period and waits for it to finish. During the removal phase,
the RCU update removes elements from a shared data
structure (possibly inserting some as well) by calling
rcu_assign_pointer() or an equivalent pointer-repla-
cement function. The rcu_assign_pointer() primitive
implements the notion of store release [12], which on
sequentially consistent and total-store-ordered systems
compiles to a simple assignment. Pointers stored by
rcu_assign_pointer() can be fetched from within
read-side critical sections by rcu_dereference(). The
removed data elements will only be accessible to read-side
critical sections that ran concurrently with the removal
phase (shown in gray), which are guaranteed to complete
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Fig. 1. Linux-Kernel usage of RCU.

Fig. 2. Schematic of RCU grace period and read-side critical sections.



before the grace period ends. Therefore, the reclamation
phase can safely free the data elements removed by the
removal phase.1

A single grace period can serve multiple removal phases,
even those carried out by multiple updaters. Furthermore,
the overhead of tracking RCU grace periods can be
piggybacked on existing process-scheduling operations, to
which RCU adds a small constant overhead. For some
common workloads, the grace-period-tracking overhead of
RCU during a given time interval may be amortized over an
arbitrarily large number of RCU updates in that same
interval [17], resulting in average per-RCU-update over-
heads arbitrarily close to zero.

2.2 RCU Deletion from a Linked List

RCU-protected data structures in the Linux kernel include
linked lists, hash tables, radix trees, and a number of
custom-built data structures. Fig. 3 shows how RCU may be
used to delete an element from a linked list that is
concurrently being traversed by RCU readers, as long as
each reader conducts its traversal within the confines of a
single RCU read-side critical section. The first and second
rows present the data structure from the viewpoint of a
reader thread that started before (first row) or after (second
row) the grace period began. The last row of the figure
shows the updater’s view of the data structure.

The first column of the figure shows a singly linked list
with elements A, B, and C. Any reader initiated before the
grace period might hold references to any of these elements.

The list_del_rcu() routine unlinks element B from
the list, but leaves the link from B to C intact, as shown on
the second column of the figure. This permits readers
already referencing B to advance to C, as shown on the
second and third columns of the figure. The transition from
the second to the third column shows element B disappear-
ing from the reader-thread viewpoint. During this transi-

tion, element B moves from globally visible, where any
reader may obtain a new reference, to locally visible, where
only readers already having a reference can see element B.

The synchronize_rcu() primitive waits for a grace
period, after which all preexisting read-side critical sections
will have completed, resulting in the state shown in the
fourth column of the figure, where readers no longer hold
references to element B. Element B’s transition from locally
visible to private is denoted by the white background for the
B box. It is then safe to invoke free(), reclaiming element
B’s memory, as shown in the last column of the figure.

Although RCU has many uses, this list-deletion process
is frequently used to replace reader-writer locking [18].

3 USER-SPACE RCU USAGE SCENARIOS

The user-level RCU work described later in this paper was
inspired by the need to reduce the overhead and improve the
scalability of the LTTng userspace tracer (UST), which
carries out performance analysis and monitoring of user-
mode applications [19], [20]. UST imposes important
constraints on the user-level RCU implementation. First,
UST cannot require source-level modifications to the
application under test, which rules out the QSBR approach
that is presented in Appendix D2 in the Supplementary
Material, which can be found on the Computer Society
Digital Library. Second, UST must support instrumentation
of execution sites selected by the user at runtime. Because the
user is permitted to instrument signal handlers and library
functions, RCU read-side critical sections must be nestable.

BIND, a major domain-name server used for Internet
domain-name resolution, is facing scalability issues [21].
Since domain names are read often but rarely updated,
using user-level RCU might be beneficial. Others have
mentioned possibilities in financial applications. Finally,
one can also argue that RCU has seen long use at user level
in the guise of user-mode Linux.

In general, user-level RCU’s area of applicability
appears similar to that in the Linux kernel: to read-
mostly data structures, especially in cases where stale data
can be accommodated.

4 CLASSES OF RCU IMPLEMENTATIONS

(SUMMARY)

Appendix D in the Supplementary Material, which can be
found on the Computer Society Digital Library, describes
several classes of RCU implementations. Appendix D1,
which can be found on the Computer Society Digital
Library, first describes some primitives that might be
unfamiliar to the reader, and then Appendices D2, D3, and
D4, which can be found on the Computer Society Digital
Library, present user-space RCU implementations that are
optimized for different use cases. The QSBR implementa-
tion presented in Appendix D2, which can be found on
the Computer Society Digital Library, offers the best
possible read-side performance, but requires that each
thread periodically calls a function to announce that it is
in a quiescent state, thus strongly constraining the
application’s design. The general-purpose implementation
presented in Appendix D3, which can be found on the
Computer Society Digital Library, places almost no
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1. Interestingly enough, placing nonblocking-synchronization (NBS) [15]
updates in RCU read-side critical sections admits the same simplifications
to NBS algorithms that are commonly provided by automatic garbage
collectors. In particular, this approach avoids the ABA problem [16].
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Fig. 3. RCU linked-list deletion.



constraints on the application’s design, thus being appro-
priate for use within a general-purpose library, but it has
higher read-side overhead. Appendix D4, which can be
found on the Computer Society Digital Library, presents
an implementation having low read-side overhead and
requiring only that the application give up one POSIX
signal to RCU update processing, and is called the signal-
based implementation. Finally, Appendix D5, which can
be found on the Computer Society Digital Library,
demonstrates how to create nonblocking RCU update
primitives.

5 EXPERIMENTAL RESULTS

This section presents benchmarks comparing the RCU
mechanisms described in this paper to each other, to
pthread mutexes, to pthread reader-writer locks, and to
per-thread mutexes. The per-thread mutex approach uses
one mutex per reader thread so that updater threads take
all the mutexes, always in the same order, to exclude all
readers. This approach ensures reader cache locality at the
expense of slower write-side locking [22]. Section 5.1
examines read-side scalability, Section 5.2 discusses the
effect on the read-side primitives of varying the critical-
section duration, Section 5.3 presents the impact of updates
on read-side performance, and finally Section 5.4 compares
update-side throughput. The goal is to identify clearly the
situations in which RCU outperforms the classic locking
solutions found in existing applications.

The machines used to run the benchmarks are an 8-core
Intel Core2 Xeon E5405 clocked at 2.0 GHz and a 64-core
IBM PowerPC POWER5+ clocked at 1.9 GHz. Each core of
the PowerPC machine has two hardware threads. To
eliminate hardware-thread-level contention for per-core
resources, we run our benchmarks using only one hardware
thread on each of the 64 cores.

The mutex and reader-writer lock implementations used
for comparison are the standard pthread implementations
from the GNU C Library 2.7 for 64-bit Intel and GNU C
Library 2.5 for 64-bit PowerPC.

Software Transactional Memory (STM) is not included in
these comparisons because the jury is still out on STM
practicality [23]. STM treats concurrent reads and writes to
the same variable as conflicts, requiring frequent conflict
checks, in turn degrading reader performance and scalability.

In contrast, Figs. 9 and 10 will show that RCU’s nonconflicting
concurrent reads and writes minimize read overhead while
maintaining extremely high read scalability, even in the
presence of heavy write workloads. Researchers have
improved STM’s read-side performance and scalability [24],
albeit in some cases by placing the burden of instrumentation
and privatization on the developer [25]. Hardware Transac-
tional Memory (HTM) [26], [27], [28] is likely to be more
scalable than STM; unfortunately, no system supporting
HTM was available for this study.

5.1 Read-Side Scalability

Fig. 4 presents a read-side scalability comparison of the
RCU mechanisms and the locking primitives on the
PowerPC. The goal of this test is to measure each
synchronization technique’s performance in read-only
scenarios, varying the number of CPUs. Each test ran on
between 1 and 64 readers for 10 seconds, each taking a read
lock, reading one variable, then releasing the lock in a tight
loop with no updater. The figure shows that RCU and per-
thread mutexes achieve linear scalability, courtesy of the
perfect memory locality attained by these approaches.
QSBR is fastest, followed by signal-based RCU, general-
purpose RCU, and per-thread mutex, each adding a
constant per-CPU overhead. The Xeon behaves similarly
and is not shown here.

Note that the performance of the QSBR and the signal-
based-RCU implementations are more than an order of
magnitude greater than that of the per-thread mutex.
Because the performance of the per-thread mutex corre-
sponds to that of perfect-locality uncontended locking,
these two variants of RCU are therefore more than an order
of magnitude faster than uncontended locking. Even the
slower general-purpose RCU implementation is more than
twice as fast as uncontended locking, making use of RCU
extremely attractive for read-mostly data structures.

In Fig. 4, the traces for pthread mutex and pthread
reader-writer locking cannot be easily distinguished from
the x-axis. Fig. 5 therefore displays only these two traces,
showing their well-known negative scalability.

5.2 Read-Side Critical Section Duration

Fig. 6 presents the number of reads per second as a function
of the duration in nanoseconds of the read-side critical
sections. This benchmark is performed with eight reader
threads acquiring the read lock, reading the data structure,
busy-waiting for the appropriate delay, and releasing the
lock. There is no active updater.
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Fig. 4. Read-side scalability of various synchronization primitives, 64-
core POWER5+.

Fig. 5. Read-side scalability of mutex and reader-write lock, 64-core
POWER5+.



The number of reads per second is inversely proportional
to the sum of the overheads of the read-side primitives and
the duration of the read-side critical section. As the critical-
section duration increases, the number of reads per second
asymptotically approaches the inverse of this duration. The
logarithmic axes of Figs. 6, 7, and 8 therefore cause the
slopes of the curves to approach �1. The region where each
curve nears its asymptote is closely related to the overhead
of the corresponding read-side mechanism.

Thus on the Xeon, QSBR, and signal-based RCU have
read-side locking overheads at least a factor of 5 better than
general-purpose RCU, which in turn is about a factor of 2
better than per-thread mutexes, which in turn is about a
factor of 20 better than reader-writer locks (the curves near
their asymptotes at 50, 250, 500, and 10,000 nanoseconds,
respectively). For read-side critical sections longer than
1,000 nanoseconds, the difference in overhead between
RCU and per-thread mutexes is negligible. The pthread
mutex asymptote is lower than the others, because the
single mutex can be held by only one reader at a time.

Corresponding curves for the POWER5+ machine appear
in Figs. 7 and 8. The difference between them is that Fig. 8
uses 64 reader threads and 64 cores, whereas Fig. 7 uses only
eight threads bound to eight cores spaced with a stride of 8.
Cores close to each other share a common L2 and L3 cache
on the POWER5+, which causes reader-writer lock and
pthread mutex to be slightly faster at lower stride values
(not shown). This has no significant effect on our results.

Comparing Figs. 7 and 8 shows that the read-side over-
heads of both the reader-writer lock and the pthread mutex

schemes are about 10 times larger when running on 64 cores
than on 8 cores (curves near their asymptotes at 10,000 and
2,500 nanoseconds instead of 1,000 and 250, respectively).
This effect is caused by interprocessor cache-line-exchange
delays and nonlinear scaling of lock-contention times. By
contrast, the read-side overheads of the RCU and per-thread
mutex schemes are independent of the number of CPUs, and
on this machine, the difference in overhead between these
schemes is negligible for critical sections longer than 250
nanoseconds.

Two interesting features of the pthread reader-writer lock
trace in Figs. 6, 7, and 8 deserve explanation. The first is that
the performance of pthread reader-writer locking is inferior
to that of pthread mutex for small read-side critical-section
lengths, which is due to the slightly higher overhead of
reader-writer locking compared to that of pthread mutex’s
exclusive locking. The second is the slight rise in throughput
for reader-writer locking just prior to joining the asymptote,
which is due to decreased memory contention on the data
structure implementing the reader-writer lock.

5.3 Effects of Updates on Read-Side Performance

The results in Sections 5.1 and 5.2 clearly show RCU’s
read-side performance advantages. However, RCU up-
dates can incur performance penalties due to the overhead
of grace periods and the resulting decreases in locality of
reference. This section therefore measures these perfor-
mance penalties.

Fig. 9 presents the impact of update frequency on read-side
performance for the various locking primitives on the Intel
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Fig. 6. Impact of read-side critical section length on 8-core Xeon,
logarithmic scale.

Fig. 7. Impact of read-side critical section length, eight reader threads on
64-core POWER5+, logarithmic scale.

Fig. 8. Impact of read-side critical section length, 64 reader threads on
64-core POWER5+, logarithmic scale.

Fig. 9. Update overhead, 8-core Intel Xeon, logarithmic scale.



Xeon. It is performed by running four reader and four
updater threads and varying the delay between updates. The
updaters for the per-thread mutex, mutex, and reader-writer
lock experiments store two different integer values succes-
sively to the same variable. Readers accessing the variable
twice while holding a lock are guaranteed to observe a single,
unchanged value. To provide the same effect, the RCU
updaters allocate a new structure, store an integer in this
newly allocated structure, and then atomically exchange the
pointer to the new structure with the old pointer currently
being accessed by readers. The RCU experiments store only a
single integer value in each structure; we verified that
successively storing two values to the same memory location
had no significant impact on performance. Memory reclama-
tion is batched using an rcu_defer() mechanism; this
mechanism uses fixed-size per-thread queues to hold
memory reclamation requests so that an updater incurs a
grace period no more than once every 4,096 updates. A grace
period is of course required whenever an updater finds its
queue is full. In addition, a separate worker thread empties
the queues every 100 milliseconds to provide an upper bound
for reclamation delay. Fig. 10 shows the result of this same
benchmark running on a 64-core POWER5+, with 32 reader
and 32 updater threads.

Interestingly, on such a workload with four tight-loop
readers, mutexes uniformly outperform reader-writer lock-
ing. Furthermore, this particular implementation of reader-
writer locking eventually suffers from reader starvation.

The RCU read-side performance shown in Figs. 9 and 10
trails off at high update rates, the causes of which are
presented in Appendix E of the Supplementary Material,
which can be found on the Computer Society Digital
Library.

Figs. 11 and 12 present the impact of the update-side
critical-section length on read-side performance. These tests
are performed with four reader and four writer threads on
the Xeon, and with 32 reader and 32 writer threads on the
POWER5+. Readers run as quickly as possible, with no
delay between reads. Writer iterations are separated by an
arbitrarily sized delay consisting of 10 iterations of a busy
loop, amounting to 55 nanoseconds for the Intel Xeon (due
to the “rep; nop” instruction recommended for x86 busy-
waiting loops) and 2.0 nanoseconds for the POWER5+.

With RCU approaches, the read-side performance is
largely unaffected by updates. Slight variations can be seen
on a linear scale (not shown here), but these are caused

primarily by CPU affinity of readers and writers, which

influences the sharing of caches.
Unlike RCU, per-thread mutex readers are significantly

impacted by long write-side critical sections. Again refer-

ring to Figs. 11 and 12, read-side performance degrades

significantly beyond a write-side critical-section length of

5,000 nanoseconds on both the Xeon and the POWER5+. On

the Xeon, the pthread reader-writer lock and pthread mutex

degrade catastrophically starting at 250 to 750 nanoseconds

write-side critical-section length. In addition, these schemes

show signs of starvation in the presence of long write-side

critical sections. We saw instances of both reader starvation

(the dips in Fig. 12) and writer starvation (not shown);

apparently the class which owns the lock first (either

readers or writers) tends to keep it for the whole test

duration. This is likely caused by the brevity of the delays

between reads and updates, which favors the previous lock

owner due to unfairness in the pthread implementations.

5.4 Update Throughput

Maximum update rates can be inferred from the X-axis of

Figs. 9 and 10 by selecting the rightmost point of a given

trace. For example, Fig. 9 shows that RCU attains 2 million

updates per second, while per-thread locks manages but

0.1 million updates per second. A key reason for this result

is that RCU readers do not block RCU writers. Furthermore,

although waiting for an RCU grace period can incur

significant latency, it does not necessarily degrade updater
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Fig. 10. Update overhead, 64-core POWER5+, logarithmic scale. Fig. 11. Impact of update-side critical section length on read-side, 8-core
Intel Xeon, logarithmic scale.

Fig. 12. Impact of update-side critical section length on read-side,
64-core POWER5+, logarithmic scale.



bandwidth because in production-quality implementations,
RCU grace periods can overlap in time.

In Fig. 10, the mutex-based benchmark performance
starts degrading at 30,000 updates per second with
32 updater threads, while RCU easily exceeds 100,000
updates per second. These results clearly show the need to
partition data in order to attain good performance on larger
systems. Benchmarks running only four updater threads on
the 64-core system show similar effects (data not presented).
Fig. 9 shows that update overhead remains reasonably
constant even at higher update frequency for four updater
threads on the Xeon. Therefore, as the number of concurrent
updaters increases, mutex behavior seems to depend on the
architecture and on the specific GNU C Library version.

In Fig. 10, the reader-writer lock attains only 175
updates per second, indicating that updaters are starved
by readers. Per-thread locks attain only 10,000 updates per
second. Thus, locking significantly limits update rate
relative to RCU.

These results show that RCU QSBR and general-
purpose RCU attain the highest update rates for parti-
tionable read-mostly data structures (where “read mostly”
means more than 90 percent of accesses are reads) even
compared to uncontended locking. This is attributed to
the lower performance overhead for exchanging a pointer
compared to the multiple atomic operations and memory
barriers implied by acquiring and releasing a lock. RCU is
sometimes used even for update-heavy workloads, due to
the wait-free and deadlock-immune properties of its read-
side primitives. The performance characteristics of RCU
for update-heavy workloads have been presented else-
where [29].

6 CONCLUSIONS

We have presented a set of RCU implementations covering
a wide spectrum of application architectures. QSBR shows
the best performance characteristics, but severely constrains
the application architecture by requiring that each reader
thread periodically announce that it is in a quiescent state.
Signal-based RCU does not have this requirement, and
performs almost as well as QSBR, but requires reserving a
POSIX signal. Unlike the other two, general-purpose RCU
incurs significant read-side overhead. However, it mini-
mizes constraints on application architecture, requiring
only that each thread invokes an initialization function
before entering its first RCU read-side critical section.

Benchmarks demonstrate linear read-side scalability of
all the RCU implementations and of per-thread locking.
However, they also demonstrate that the performance of the
RCU implementations can exceed that of per-thread locking
(and thus that of uncontended locking) by up to an order of
magnitude, independent of the number of threads. The
benchmarks also show that there is a read-side critical-
section duration beyond which reader-writer locking, RCU,
and per-thread locking perform similarly, and that this
duration increases with the number of cores. In addition,
performing grace-period detection in batch allows RCU to
attain better update rates than reader-writer locking, per-
thread locking, and exclusive locking on read-mostly data
structures. It is possible to further decrease RCU update-

side overhead by designing data structures so as to provide
good cache locality for updaters.

7 LEGAL STATEMENT

This work represents the views of the authors and does not
necessarily represent the view of their employers.

Linux is a registered trademark of Linus Torvalds.
Other company, product, and service names may be

trademarks or service marks of others.

ACKNOWLEDGMENTS

We owe thanks to Maged Michael, Etienne Bergeron,
Alexandre Desnoyers, Michael Stumm, Balaji Rao, Tom
Hart, Robert Bauer, Dmitriy V’jukov, and the anonymous
reviewers for many helpful suggestions. We are indebted to
the Linux community for their use of and contributions to
RCU and to Linus Torvalds for sharing his kernel with us
all. We are grateful to Kathy Bennett for her support of this
effort. This material is based upon work supported by the
National Science Foundation (NSF) under Grant No. CNS-
0719851. This work is funded by Google, Natural Sciences
and Engineering Research Council of Canada, Ericsson, and
Defence Research and Development Canada. Part of this
work was done by Mathieu Desnoyers while at the
Computer and Software Engineering Department, Ecole
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