#[macro_use] mod support; macro_rules! impl_affine3_tests { ($t:ident, $affine3:ident, $quat:ident, $vec3:ident, $mat3:ident, $mat4:ident) => { const MATRIX1D: [$t; 12] = [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, ]; const MATRIX2D: [[$t; 3]; 4] = [ [1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0], [10.0, 11.0, 12.0], ]; use core::$t::NAN; use core::$t::NEG_INFINITY; glam_test!(test_affine3_identity, { assert_eq!($affine3::IDENTITY, $affine3::IDENTITY * $affine3::IDENTITY); assert_eq!($affine3::IDENTITY, $affine3::default()); }); glam_test!(test_affine3_zero, { assert_eq!( $affine3::ZERO.transform_point3($vec3::new(1., 2., 3.)), $vec3::ZERO ); }); glam_test!(test_affine3_nan, { assert!($affine3::NAN.is_nan()); assert!(!$affine3::NAN.is_finite()); }); glam_test!(test_affine3_from_cols, { let a = $affine3::from_cols( $vec3::from_array(MATRIX2D[0]).into(), $vec3::from_array(MATRIX2D[1]).into(), $vec3::from_array(MATRIX2D[2]).into(), $vec3::from_array(MATRIX2D[3]).into(), ); assert_eq!(MATRIX2D, a.to_cols_array_2d()); let a = $affine3::from_cols_array(&MATRIX1D); assert_eq!(MATRIX1D, a.to_cols_array()); let a = $affine3::from_cols_array_2d(&MATRIX2D); assert_eq!(MATRIX2D, a.to_cols_array_2d()); }); glam_test!(test_affine3_deref, { let a = $affine3::from_cols_array_2d(&MATRIX2D); assert_eq!(MATRIX2D[0], a.x_axis.to_array()); assert_eq!(MATRIX2D[1], a.y_axis.to_array()); assert_eq!(MATRIX2D[2], a.z_axis.to_array()); assert_eq!(MATRIX2D[3], a.w_axis.to_array()); let mut b = a; b.x_axis *= 0.0; b.y_axis *= 0.0; b.z_axis *= 0.0; b.w_axis *= 0.0; assert_eq!($affine3::ZERO, b); }); glam_test!(test_affine3_from_mat3, { let m = $mat3::from_cols_array_2d(&[MATRIX2D[0], MATRIX2D[1], MATRIX2D[2]]); let a = $affine3::from_mat3(m); assert_eq!(m, a.matrix3.into()); assert_eq!($vec3::ZERO, a.translation.into()); let t = $vec3::from_array(MATRIX2D[3]); let a = $affine3::from_mat3_translation(m, t); assert_eq!(MATRIX2D, a.to_cols_array_2d()); }); glam_test!(test_affine2_from_mat4, { let m = $mat4::from_cols_array_2d(&[ [1.0, 2.0, 3.0, 0.0], [4.0, 5.0, 6.0, 0.0], [7.0, 8.0, 9.0, 0.0], [10.0, 11.0, 12.0, 1.0], ]); let a = $affine3::from_mat4(m); assert_eq!(MATRIX2D, a.to_cols_array_2d()); assert_eq!(m, $mat4::from(a)); }); glam_test!(test_affine3_translation, { let translate = $affine3::from_translation($vec3::new(1.0, 2.0, 3.0)); assert_eq!(translate.translation, $vec3::new(1.0, 2.0, 3.0).into()); assert_eq!( translate.transform_point3($vec3::new(2.0, 3.0, 4.0)), $vec3::new(3.0, 5.0, 7.0), ); }); glam_test!(test_from_rotation, { let eps = 2.0 * core::f32::EPSILON; let rot_x1 = $affine3::from_rotation_x(deg(180.0)); let rot_x2 = $affine3::from_axis_angle($vec3::X, deg(180.0)); assert_approx_eq!(rot_x1, rot_x2, eps); let rot_y1 = $affine3::from_rotation_y(deg(180.0)); let rot_y2 = $affine3::from_axis_angle($vec3::Y, deg(180.0)); assert_approx_eq!(rot_y1, rot_y2, eps); let rot_z1 = $affine3::from_rotation_z(deg(180.0)); let rot_z2 = $affine3::from_axis_angle($vec3::Z, deg(180.0)); assert_approx_eq!(rot_z1, rot_z2, eps); assert_approx_eq!( $affine3::from_rotation_x(deg(180.0)), $affine3::from_quat($quat::from_rotation_x(deg(180.0))) ); assert_approx_eq!( $quat::from_affine3(&$affine3::from_rotation_x(deg(180.0))), $quat::from_rotation_x(deg(180.0)) ); let m = $affine3::from_rotation_translation( $quat::from_rotation_x(deg(90.0)), $vec3::new(1.0, 2.0, 3.0), ); let result3 = m.transform_vector3($vec3::Y); assert_approx_eq!($vec3::new(0.0, 0.0, 1.0), result3, 1.0e-6); should_glam_assert!({ $affine3::from_axis_angle($vec3::ZERO, 0.0) }); should_glam_assert!({ $affine3::from_quat($quat::IDENTITY * 2.0) }); }); glam_test!(test_affine3_mul, { let m = $affine3::from_axis_angle($vec3::Z, deg(90.0)); let result3 = m.transform_vector3($vec3::Y); assert_approx_eq!($vec3::new(-1.0, 0.0, 0.0), result3); let m = $affine3::from_scale_rotation_translation( $vec3::new(0.5, 1.5, 2.0), $quat::from_rotation_x(deg(90.0)), $vec3::new(1.0, 2.0, 3.0), ); let result3 = m.transform_vector3($vec3::Y); assert_approx_eq!($vec3::new(0.0, 0.0, 1.5), result3, 1.0e-6); let result3 = m.transform_point3($vec3::Y); assert_approx_eq!($vec3::new(1.0, 2.0, 4.5), result3, 1.0e-6); }); glam_test!(test_from_scale, { let m = $affine3::from_scale($vec3::new(2.0, 4.0, 8.0)); assert_approx_eq!( m.transform_point3($vec3::new(1.0, 1.0, 1.0)), $vec3::new(2.0, 4.0, 8.0) ); }); glam_test!(test_affine3_inverse, { let inv = $affine3::IDENTITY.inverse(); assert_approx_eq!($affine3::IDENTITY, inv); let rotz = $affine3::from_rotation_z(deg(90.0)); let rotz_inv = rotz.inverse(); assert_approx_eq!($affine3::IDENTITY, rotz * rotz_inv); assert_approx_eq!($affine3::IDENTITY, rotz_inv * rotz); let trans = $affine3::from_translation($vec3::new(1.0, 2.0, 3.0)); let trans_inv = trans.inverse(); assert_approx_eq!($affine3::IDENTITY, trans * trans_inv); assert_approx_eq!($affine3::IDENTITY, trans_inv * trans); let scale = $affine3::from_scale($vec3::new(4.0, 5.0, 6.0)); let scale_inv = scale.inverse(); assert_approx_eq!($affine3::IDENTITY, scale * scale_inv); assert_approx_eq!($affine3::IDENTITY, scale_inv * scale); let m = scale * rotz * trans; let m_inv = m.inverse(); assert_approx_eq!($affine3::IDENTITY, m * m_inv, 1.0e-5); assert_approx_eq!($affine3::IDENTITY, m_inv * m, 1.0e-5); assert_approx_eq!(m_inv, trans_inv * rotz_inv * scale_inv, 1.0e-6); // Make sure we can invert a shear matrix: let m = $affine3::from_axis_angle($vec3::X, 0.5) * $affine3::from_scale($vec3::new(1.0, 0.5, 2.0)) * $affine3::from_axis_angle($vec3::X, -0.5); let m_inv = m.inverse(); assert_approx_eq!($affine3::IDENTITY, m * m_inv, 1.0e-5); assert_approx_eq!($affine3::IDENTITY, m_inv * m, 1.0e-5); should_glam_assert!({ $affine3::ZERO.inverse() }); }); glam_test!(test_affine3_decompose, { // identity let (out_scale, out_rotation, out_translation) = $affine3::IDENTITY.to_scale_rotation_translation(); assert_approx_eq!($vec3::ONE, out_scale); assert!(out_rotation.is_near_identity()); assert_approx_eq!($vec3::ZERO, out_translation); // no scale let in_scale = $vec3::ONE; let in_translation = $vec3::new(-2.0, 4.0, -0.125); let in_rotation = $quat::from_euler( glam::EulerRot::YXZ, $t::to_radians(-45.0), $t::to_radians(180.0), $t::to_radians(270.0), ); let in_mat = $affine3::from_scale_rotation_translation(in_scale, in_rotation, in_translation); let (out_scale, out_rotation, out_translation) = in_mat.to_scale_rotation_translation(); assert_approx_eq!(in_scale, out_scale, 1e-6); // out_rotation is different but produces the same matrix // assert_approx_eq!(in_rotation, out_rotation); assert_approx_eq!(in_translation, out_translation); assert_approx_eq!( in_mat, $affine3::from_scale_rotation_translation(out_scale, out_rotation, out_translation), 1e-6 ); // positive scale let in_scale = $vec3::new(1.0, 2.0, 4.0); let in_mat = $affine3::from_scale_rotation_translation(in_scale, in_rotation, in_translation); let (out_scale, out_rotation, out_translation) = in_mat.to_scale_rotation_translation(); assert_approx_eq!(in_scale, out_scale, 1e-6); // out_rotation is different but produces the same matrix // assert_approx_eq!(in_rotation, out_rotation); assert_approx_eq!(in_translation, out_translation); assert_approx_eq!( in_mat, $affine3::from_scale_rotation_translation(out_scale, out_rotation, out_translation), 1e-5 ); // negative scale let in_scale = $vec3::new(-4.0, 1.0, 2.0); let in_mat = $affine3::from_scale_rotation_translation(in_scale, in_rotation, in_translation); let (out_scale, out_rotation, out_translation) = in_mat.to_scale_rotation_translation(); assert_approx_eq!(in_scale, out_scale, 1e-6); // out_rotation is different but produces the same matrix // assert_approx_eq!(in_rotation, out_rotation); assert_approx_eq!(in_translation, out_translation); assert_approx_eq!( in_mat, $affine3::from_scale_rotation_translation(out_scale, out_rotation, out_translation), 1e-5 ); // negative scale let in_scale = $vec3::new(4.0, -1.0, -2.0); let in_mat = $affine3::from_scale_rotation_translation(in_scale, in_rotation, in_translation); let (out_scale, out_rotation, out_translation) = in_mat.to_scale_rotation_translation(); // out_scale and out_rotation are different but they produce the same matrix // assert_approx_eq!(in_scale, out_scale, 1e-6); // assert_approx_eq!(in_rotation, out_rotation); assert_approx_eq!(in_translation, out_translation); assert_approx_eq!( in_mat, $affine3::from_scale_rotation_translation(out_scale, out_rotation, out_translation), 1e-6 ); }); glam_test!(test_affine3_look_at, { let eye = $vec3::new(0.0, 0.0, -5.0); let center = $vec3::new(0.0, 0.0, 0.0); let up = $vec3::new(1.0, 0.0, 0.0); let point = $vec3::new(1.0, 0.0, 0.0); let lh = $affine3::look_at_lh(eye, center, up); let rh = $affine3::look_at_rh(eye, center, up); assert_approx_eq!(lh.transform_point3(point), $vec3::new(0.0, 1.0, 5.0)); assert_approx_eq!(rh.transform_point3(point), $vec3::new(0.0, 1.0, -5.0)); let dir = center - eye; let lh = $affine3::look_to_lh(eye, dir, up); let rh = $affine3::look_to_rh(eye, dir, up); assert_approx_eq!(lh.transform_point3(point), $vec3::new(0.0, 1.0, 5.0)); assert_approx_eq!(rh.transform_point3(point), $vec3::new(0.0, 1.0, -5.0)); should_glam_assert!({ $affine3::look_at_lh($vec3::ONE, $vec3::ZERO, $vec3::ZERO) }); should_glam_assert!({ $affine3::look_at_rh($vec3::ONE, $vec3::ZERO, $vec3::ZERO) }); }); glam_test!(test_affine3_ops, { let m0 = $affine3::from_cols_array_2d(&MATRIX2D); assert_approx_eq!(m0, m0 * $affine3::IDENTITY); assert_approx_eq!(m0, $affine3::IDENTITY * m0); let mut m1 = m0; m1 *= $affine3::IDENTITY; assert_approx_eq!(m1, m0); let mat4 = $mat4::from(m0); assert_approx_eq!(mat4, $affine3::IDENTITY * mat4); assert_approx_eq!(mat4, mat4 * $affine3::IDENTITY); }); glam_test!(test_affine3_fmt, { let a = $affine3::from_cols_array_2d(&MATRIX2D); assert_eq!( format!("{}", a), "[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]" ); }); glam_test!(test_affine3_to_from_slice, { let m = $affine3::from_cols_slice(&MATRIX1D); assert_eq!($affine3::from_cols_array(&MATRIX1D), m); assert_eq!(MATRIX1D, m.to_cols_array()); assert_eq!(MATRIX2D, m.to_cols_array_2d()); let mut out: [$t; 12] = Default::default(); m.write_cols_to_slice(&mut out); assert_eq!(MATRIX1D, out); assert_eq!( m, $affine3::from_cols( MATRIX2D[0].into(), MATRIX2D[1].into(), MATRIX2D[2].into(), MATRIX2D[3].into() ) ); should_panic!({ $affine3::from_cols_slice(&[0.0; 11]) }); should_panic!({ $affine3::IDENTITY.write_cols_to_slice(&mut [0.0; 11]) }); }); glam_test!(test_product, { let ident = $affine3::IDENTITY; assert_eq!([ident, ident].iter().product::<$affine3>(), ident * ident); }); glam_test!(test_affine3_is_finite, { assert!($affine3::from_scale($vec3::new(1.0, 1.0, 1.0)).is_finite()); assert!($affine3::from_scale($vec3::new(0.0, 1.0, 1.0)).is_finite()); assert!(!$affine3::from_scale($vec3::new(1.0, NAN, 1.0)).is_finite()); assert!(!$affine3::from_scale($vec3::new(1.0, 1.0, NEG_INFINITY)).is_finite()); }); }; } mod affine3a { use super::support::{deg, FloatCompare}; use glam::{Affine3A, Mat3, Mat4, Quat, Vec3, Vec3A}; impl FloatCompare for Affine3A { #[inline] fn approx_eq(&self, other: &Self, max_abs_diff: f32) -> bool { self.abs_diff_eq(*other, max_abs_diff) } #[inline] fn abs_diff(&self, other: &Self) -> Self { Self { matrix3: self.matrix3.abs_diff(&other.matrix3), translation: self.translation.abs_diff(&other.translation), } } } glam_test!(test_align, { use std::mem; assert_eq!(64, mem::size_of::()); assert_eq!(mem::align_of::(), mem::align_of::()); }); glam_test!(test_affine3_mul_vec3a, { let m = Affine3A::from_axis_angle(Vec3::Z, deg(90.0)); let result3 = m.transform_vector3a(Vec3A::Y); assert_approx_eq!(Vec3A::new(-1.0, 0.0, 0.0), result3); let m = Affine3A::from_scale_rotation_translation( Vec3::new(0.5, 1.5, 2.0), Quat::from_rotation_x(deg(90.0)), Vec3::new(1.0, 2.0, 3.0), ); let result3 = m.transform_vector3a(Vec3A::Y); assert_approx_eq!(Vec3A::new(0.0, 0.0, 1.5), result3, 1.0e-6); let result3 = m.transform_point3a(Vec3A::Y); assert_approx_eq!(Vec3A::new(1.0, 2.0, 4.5), result3, 1.0e-6); }); impl_affine3_tests!(f32, Affine3A, Quat, Vec3, Mat3, Mat4); } mod daffine3 { use super::support::{deg, FloatCompare}; use glam::{DAffine3, DMat3, DMat4, DQuat, DVec3}; impl FloatCompare for DAffine3 { #[inline] fn approx_eq(&self, other: &Self, max_abs_diff: f32) -> bool { self.abs_diff_eq(*other, max_abs_diff as f64) } #[inline] fn abs_diff(&self, other: &Self) -> Self { Self { matrix3: self.matrix3.abs_diff(&other.matrix3), translation: self.translation.abs_diff(&other.translation), } } } glam_test!(test_align, { use std::mem; assert_eq!(96, mem::size_of::()); assert_eq!(mem::align_of::(), mem::align_of::()); }); impl_affine3_tests!(f64, DAffine3, DQuat, DVec3, DMat3, DMat4); }