#! /usr/bin/env perl # Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # October 2005. # # Montgomery multiplication routine for x86_64. While it gives modest # 9% improvement of rsa4096 sign on Opteron, rsa512 sign runs more # than twice, >2x, as fast. Most common rsa1024 sign is improved by # respectful 50%. It remains to be seen if loop unrolling and # dedicated squaring routine can provide further improvement... # July 2011. # # Add dedicated squaring procedure. Performance improvement varies # from platform to platform, but in average it's ~5%/15%/25%/33% # for 512-/1024-/2048-/4096-bit RSA *sign* benchmarks respectively. # August 2011. # # Unroll and modulo-schedule inner loops in such manner that they # are "fallen through" for input lengths of 8, which is critical for # 1024-bit RSA *sign*. Average performance improvement in comparison # to *initial* version of this module from 2005 is ~0%/30%/40%/45% # for 512-/1024-/2048-/4096-bit RSA *sign* benchmarks respectively. # June 2013. # # Optimize reduction in squaring procedure and improve 1024+-bit RSA # sign performance by 10-16% on Intel Sandy Bridge and later # (virtually same on non-Intel processors). # August 2013. # # Add MULX/ADOX/ADCX code path. $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; # In upstream, this is controlled by shelling out to the compiler to check # versions, but BoringSSL is intended to be used with pre-generated perlasm # output, so this isn't useful anyway. $addx = 1; # void bn_mul_mont( $rp="%rdi"; # BN_ULONG *rp, $ap="%rsi"; # const BN_ULONG *ap, $bp="%rdx"; # const BN_ULONG *bp, $np="%rcx"; # const BN_ULONG *np, $n0="%r8"; # const BN_ULONG *n0, # TODO(davidben): The code below treats $num as an int, but C passes in a # size_t. $num="%r9"; # size_t num); $lo0="%r10"; $hi0="%r11"; $hi1="%r13"; $i="%r14"; $j="%r15"; $m0="%rbx"; $m1="%rbp"; $code=<<___; .text .extern OPENSSL_ia32cap_P .globl bn_mul_mont .type bn_mul_mont,\@function,6 .align 16 bn_mul_mont: .cfi_startproc _CET_ENDBR mov ${num}d,${num}d mov %rsp,%rax .cfi_def_cfa_register %rax test \$3,${num}d jnz .Lmul_enter cmp \$8,${num}d jb .Lmul_enter ___ $code.=<<___ if ($addx); leaq OPENSSL_ia32cap_P(%rip),%r11 mov 8(%r11),%r11d ___ $code.=<<___; cmp $ap,$bp jne .Lmul4x_enter test \$7,${num}d jz .Lsqr8x_enter jmp .Lmul4x_enter .align 16 .Lmul_enter: push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 neg $num mov %rsp,%r11 lea -16(%rsp,$num,8),%r10 # future alloca(8*(num+2)) neg $num # restore $num and \$-1024,%r10 # minimize TLB usage # An OS-agnostic version of __chkstk. # # Some OSes (Windows) insist on stack being "wired" to # physical memory in strictly sequential manner, i.e. if stack # allocation spans two pages, then reference to farmost one can # be punishable by SEGV. But page walking can do good even on # other OSes, because it guarantees that villain thread hits # the guard page before it can make damage to innocent one... sub %r10,%r11 and \$-4096,%r11 lea (%r10,%r11),%rsp mov (%rsp),%r11 cmp %r10,%rsp ja .Lmul_page_walk jmp .Lmul_page_walk_done .align 16 .Lmul_page_walk: lea -4096(%rsp),%rsp mov (%rsp),%r11 cmp %r10,%rsp ja .Lmul_page_walk .Lmul_page_walk_done: mov %rax,8(%rsp,$num,8) # tp[num+1]=%rsp .cfi_cfa_expression %rsp+8,$num,8,mul,plus,deref,+8 .Lmul_body: mov $bp,%r12 # reassign $bp ___ $bp="%r12"; $code.=<<___; mov ($n0),$n0 # pull n0[0] value mov ($bp),$m0 # m0=bp[0] mov ($ap),%rax xor $i,$i # i=0 xor $j,$j # j=0 mov $n0,$m1 mulq $m0 # ap[0]*bp[0] mov %rax,$lo0 mov ($np),%rax imulq $lo0,$m1 # "tp[0]"*n0 mov %rdx,$hi0 mulq $m1 # np[0]*m1 add %rax,$lo0 # discarded mov 8($ap),%rax adc \$0,%rdx mov %rdx,$hi1 lea 1($j),$j # j++ jmp .L1st_enter .align 16 .L1st: add %rax,$hi1 mov ($ap,$j,8),%rax adc \$0,%rdx add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0] mov $lo0,$hi0 adc \$0,%rdx mov $hi1,-16(%rsp,$j,8) # tp[j-1] mov %rdx,$hi1 .L1st_enter: mulq $m0 # ap[j]*bp[0] add %rax,$hi0 mov ($np,$j,8),%rax adc \$0,%rdx lea 1($j),$j # j++ mov %rdx,$lo0 mulq $m1 # np[j]*m1 cmp $num,$j jne .L1st add %rax,$hi1 mov ($ap),%rax # ap[0] adc \$0,%rdx add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $hi1,-16(%rsp,$j,8) # tp[j-1] mov %rdx,$hi1 mov $lo0,$hi0 xor %rdx,%rdx add $hi0,$hi1 adc \$0,%rdx mov $hi1,-8(%rsp,$num,8) mov %rdx,(%rsp,$num,8) # store upmost overflow bit lea 1($i),$i # i++ jmp .Louter .align 16 .Louter: mov ($bp,$i,8),$m0 # m0=bp[i] xor $j,$j # j=0 mov $n0,$m1 mov (%rsp),$lo0 mulq $m0 # ap[0]*bp[i] add %rax,$lo0 # ap[0]*bp[i]+tp[0] mov ($np),%rax adc \$0,%rdx imulq $lo0,$m1 # tp[0]*n0 mov %rdx,$hi0 mulq $m1 # np[0]*m1 add %rax,$lo0 # discarded mov 8($ap),%rax adc \$0,%rdx mov 8(%rsp),$lo0 # tp[1] mov %rdx,$hi1 lea 1($j),$j # j++ jmp .Linner_enter .align 16 .Linner: add %rax,$hi1 mov ($ap,$j,8),%rax adc \$0,%rdx add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j] mov (%rsp,$j,8),$lo0 adc \$0,%rdx mov $hi1,-16(%rsp,$j,8) # tp[j-1] mov %rdx,$hi1 .Linner_enter: mulq $m0 # ap[j]*bp[i] add %rax,$hi0 mov ($np,$j,8),%rax adc \$0,%rdx add $hi0,$lo0 # ap[j]*bp[i]+tp[j] mov %rdx,$hi0 adc \$0,$hi0 lea 1($j),$j # j++ mulq $m1 # np[j]*m1 cmp $num,$j jne .Linner add %rax,$hi1 mov ($ap),%rax # ap[0] adc \$0,%rdx add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j] mov (%rsp,$j,8),$lo0 adc \$0,%rdx mov $hi1,-16(%rsp,$j,8) # tp[j-1] mov %rdx,$hi1 xor %rdx,%rdx add $hi0,$hi1 adc \$0,%rdx add $lo0,$hi1 # pull upmost overflow bit adc \$0,%rdx mov $hi1,-8(%rsp,$num,8) mov %rdx,(%rsp,$num,8) # store upmost overflow bit lea 1($i),$i # i++ cmp $num,$i jb .Louter xor $i,$i # i=0 and clear CF! mov (%rsp),%rax # tp[0] mov $num,$j # j=num .align 16 .Lsub: sbb ($np,$i,8),%rax mov %rax,($rp,$i,8) # rp[i]=tp[i]-np[i] mov 8(%rsp,$i,8),%rax # tp[i+1] lea 1($i),$i # i++ dec $j # doesn't affect CF! jnz .Lsub sbb \$0,%rax # handle upmost overflow bit mov \$-1,%rbx xor %rax,%rbx # not %rax xor $i,$i mov $num,$j # j=num .Lcopy: # conditional copy mov ($rp,$i,8),%rcx mov (%rsp,$i,8),%rdx and %rbx,%rcx and %rax,%rdx mov $num,(%rsp,$i,8) # zap temporary vector or %rcx,%rdx mov %rdx,($rp,$i,8) # rp[i]=tp[i] lea 1($i),$i sub \$1,$j jnz .Lcopy mov 8(%rsp,$num,8),%rsi # restore %rsp .cfi_def_cfa %rsi,8 mov \$1,%rax mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lmul_epilogue: ret .cfi_endproc .size bn_mul_mont,.-bn_mul_mont ___ {{{ my @A=("%r10","%r11"); my @N=("%r13","%rdi"); $code.=<<___; .type bn_mul4x_mont,\@function,6 .align 16 bn_mul4x_mont: .cfi_startproc mov ${num}d,${num}d mov %rsp,%rax .cfi_def_cfa_register %rax .Lmul4x_enter: ___ $code.=<<___ if ($addx); and \$0x80100,%r11d cmp \$0x80100,%r11d je .Lmulx4x_enter ___ $code.=<<___; push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 neg $num mov %rsp,%r11 lea -32(%rsp,$num,8),%r10 # future alloca(8*(num+4)) neg $num # restore and \$-1024,%r10 # minimize TLB usage sub %r10,%r11 and \$-4096,%r11 lea (%r10,%r11),%rsp mov (%rsp),%r11 cmp %r10,%rsp ja .Lmul4x_page_walk jmp .Lmul4x_page_walk_done .Lmul4x_page_walk: lea -4096(%rsp),%rsp mov (%rsp),%r11 cmp %r10,%rsp ja .Lmul4x_page_walk .Lmul4x_page_walk_done: mov %rax,8(%rsp,$num,8) # tp[num+1]=%rsp .cfi_cfa_expression %rsp+8,$num,8,mul,plus,deref,+8 .Lmul4x_body: mov $rp,16(%rsp,$num,8) # tp[num+2]=$rp mov %rdx,%r12 # reassign $bp ___ $bp="%r12"; $code.=<<___; mov ($n0),$n0 # pull n0[0] value mov ($bp),$m0 # m0=bp[0] mov ($ap),%rax xor $i,$i # i=0 xor $j,$j # j=0 mov $n0,$m1 mulq $m0 # ap[0]*bp[0] mov %rax,$A[0] mov ($np),%rax imulq $A[0],$m1 # "tp[0]"*n0 mov %rdx,$A[1] mulq $m1 # np[0]*m1 add %rax,$A[0] # discarded mov 8($ap),%rax adc \$0,%rdx mov %rdx,$N[1] mulq $m0 add %rax,$A[1] mov 8($np),%rax adc \$0,%rdx mov %rdx,$A[0] mulq $m1 add %rax,$N[1] mov 16($ap),%rax adc \$0,%rdx add $A[1],$N[1] lea 4($j),$j # j++ adc \$0,%rdx mov $N[1],(%rsp) mov %rdx,$N[0] jmp .L1st4x .align 16 .L1st4x: mulq $m0 # ap[j]*bp[0] add %rax,$A[0] mov -16($np,$j,8),%rax adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov -8($ap,$j,8),%rax adc \$0,%rdx add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[0],-24(%rsp,$j,8) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[0] add %rax,$A[1] mov -8($np,$j,8),%rax adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov ($ap,$j,8),%rax adc \$0,%rdx add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[1],-16(%rsp,$j,8) # tp[j-1] mov %rdx,$N[0] mulq $m0 # ap[j]*bp[0] add %rax,$A[0] mov ($np,$j,8),%rax adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov 8($ap,$j,8),%rax adc \$0,%rdx add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[0],-8(%rsp,$j,8) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[0] add %rax,$A[1] mov 8($np,$j,8),%rax adc \$0,%rdx lea 4($j),$j # j++ mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov -16($ap,$j,8),%rax adc \$0,%rdx add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[1],-32(%rsp,$j,8) # tp[j-1] mov %rdx,$N[0] cmp $num,$j jb .L1st4x mulq $m0 # ap[j]*bp[0] add %rax,$A[0] mov -16($np,$j,8),%rax adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov -8($ap,$j,8),%rax adc \$0,%rdx add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[0],-24(%rsp,$j,8) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[0] add %rax,$A[1] mov -8($np,$j,8),%rax adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov ($ap),%rax # ap[0] adc \$0,%rdx add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[1],-16(%rsp,$j,8) # tp[j-1] mov %rdx,$N[0] xor $N[1],$N[1] add $A[0],$N[0] adc \$0,$N[1] mov $N[0],-8(%rsp,$j,8) mov $N[1],(%rsp,$j,8) # store upmost overflow bit lea 1($i),$i # i++ .align 4 .Louter4x: mov ($bp,$i,8),$m0 # m0=bp[i] xor $j,$j # j=0 mov (%rsp),$A[0] mov $n0,$m1 mulq $m0 # ap[0]*bp[i] add %rax,$A[0] # ap[0]*bp[i]+tp[0] mov ($np),%rax adc \$0,%rdx imulq $A[0],$m1 # tp[0]*n0 mov %rdx,$A[1] mulq $m1 # np[0]*m1 add %rax,$A[0] # "$N[0]", discarded mov 8($ap),%rax adc \$0,%rdx mov %rdx,$N[1] mulq $m0 # ap[j]*bp[i] add %rax,$A[1] mov 8($np),%rax adc \$0,%rdx add 8(%rsp),$A[1] # +tp[1] adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov 16($ap),%rax adc \$0,%rdx add $A[1],$N[1] # np[j]*m1+ap[j]*bp[i]+tp[j] lea 4($j),$j # j+=2 adc \$0,%rdx mov $N[1],(%rsp) # tp[j-1] mov %rdx,$N[0] jmp .Linner4x .align 16 .Linner4x: mulq $m0 # ap[j]*bp[i] add %rax,$A[0] mov -16($np,$j,8),%rax adc \$0,%rdx add -16(%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j] adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov -8($ap,$j,8),%rax adc \$0,%rdx add $A[0],$N[0] adc \$0,%rdx mov $N[0],-24(%rsp,$j,8) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[i] add %rax,$A[1] mov -8($np,$j,8),%rax adc \$0,%rdx add -8(%rsp,$j,8),$A[1] adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov ($ap,$j,8),%rax adc \$0,%rdx add $A[1],$N[1] adc \$0,%rdx mov $N[1],-16(%rsp,$j,8) # tp[j-1] mov %rdx,$N[0] mulq $m0 # ap[j]*bp[i] add %rax,$A[0] mov ($np,$j,8),%rax adc \$0,%rdx add (%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j] adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov 8($ap,$j,8),%rax adc \$0,%rdx add $A[0],$N[0] adc \$0,%rdx mov $N[0],-8(%rsp,$j,8) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[i] add %rax,$A[1] mov 8($np,$j,8),%rax adc \$0,%rdx add 8(%rsp,$j,8),$A[1] adc \$0,%rdx lea 4($j),$j # j++ mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov -16($ap,$j,8),%rax adc \$0,%rdx add $A[1],$N[1] adc \$0,%rdx mov $N[1],-32(%rsp,$j,8) # tp[j-1] mov %rdx,$N[0] cmp $num,$j jb .Linner4x mulq $m0 # ap[j]*bp[i] add %rax,$A[0] mov -16($np,$j,8),%rax adc \$0,%rdx add -16(%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j] adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov -8($ap,$j,8),%rax adc \$0,%rdx add $A[0],$N[0] adc \$0,%rdx mov $N[0],-24(%rsp,$j,8) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[i] add %rax,$A[1] mov -8($np,$j,8),%rax adc \$0,%rdx add -8(%rsp,$j,8),$A[1] adc \$0,%rdx lea 1($i),$i # i++ mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov ($ap),%rax # ap[0] adc \$0,%rdx add $A[1],$N[1] adc \$0,%rdx mov $N[1],-16(%rsp,$j,8) # tp[j-1] mov %rdx,$N[0] xor $N[1],$N[1] add $A[0],$N[0] adc \$0,$N[1] add (%rsp,$num,8),$N[0] # pull upmost overflow bit adc \$0,$N[1] mov $N[0],-8(%rsp,$j,8) mov $N[1],(%rsp,$j,8) # store upmost overflow bit cmp $num,$i jb .Louter4x ___ { my @ri=("%rax","%rdx",$m0,$m1); $code.=<<___; mov 16(%rsp,$num,8),$rp # restore $rp lea -4($num),$j mov 0(%rsp),@ri[0] # tp[0] mov 8(%rsp),@ri[1] # tp[1] shr \$2,$j # j=num/4-1 lea (%rsp),$ap # borrow ap for tp xor $i,$i # i=0 and clear CF! sub 0($np),@ri[0] mov 16($ap),@ri[2] # tp[2] mov 24($ap),@ri[3] # tp[3] sbb 8($np),@ri[1] .Lsub4x: mov @ri[0],0($rp,$i,8) # rp[i]=tp[i]-np[i] mov @ri[1],8($rp,$i,8) # rp[i]=tp[i]-np[i] sbb 16($np,$i,8),@ri[2] mov 32($ap,$i,8),@ri[0] # tp[i+1] mov 40($ap,$i,8),@ri[1] sbb 24($np,$i,8),@ri[3] mov @ri[2],16($rp,$i,8) # rp[i]=tp[i]-np[i] mov @ri[3],24($rp,$i,8) # rp[i]=tp[i]-np[i] sbb 32($np,$i,8),@ri[0] mov 48($ap,$i,8),@ri[2] mov 56($ap,$i,8),@ri[3] sbb 40($np,$i,8),@ri[1] lea 4($i),$i # i++ dec $j # doesn't affect CF! jnz .Lsub4x mov @ri[0],0($rp,$i,8) # rp[i]=tp[i]-np[i] mov 32($ap,$i,8),@ri[0] # load overflow bit sbb 16($np,$i,8),@ri[2] mov @ri[1],8($rp,$i,8) # rp[i]=tp[i]-np[i] sbb 24($np,$i,8),@ri[3] mov @ri[2],16($rp,$i,8) # rp[i]=tp[i]-np[i] sbb \$0,@ri[0] # handle upmost overflow bit mov @ri[3],24($rp,$i,8) # rp[i]=tp[i]-np[i] pxor %xmm0,%xmm0 movq @ri[0],%xmm4 pcmpeqd %xmm5,%xmm5 pshufd \$0,%xmm4,%xmm4 mov $num,$j pxor %xmm4,%xmm5 shr \$2,$j # j=num/4 xor %eax,%eax # i=0 jmp .Lcopy4x .align 16 .Lcopy4x: # conditional copy movdqa (%rsp,%rax),%xmm1 movdqu ($rp,%rax),%xmm2 pand %xmm4,%xmm1 pand %xmm5,%xmm2 movdqa 16(%rsp,%rax),%xmm3 movdqa %xmm0,(%rsp,%rax) por %xmm2,%xmm1 movdqu 16($rp,%rax),%xmm2 movdqu %xmm1,($rp,%rax) pand %xmm4,%xmm3 pand %xmm5,%xmm2 movdqa %xmm0,16(%rsp,%rax) por %xmm2,%xmm3 movdqu %xmm3,16($rp,%rax) lea 32(%rax),%rax dec $j jnz .Lcopy4x ___ } $code.=<<___; mov 8(%rsp,$num,8),%rsi # restore %rsp .cfi_def_cfa %rsi, 8 mov \$1,%rax mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lmul4x_epilogue: ret .cfi_endproc .size bn_mul4x_mont,.-bn_mul4x_mont ___ }}} {{{ ###################################################################### # void bn_sqr8x_mont( my $rptr="%rdi"; # const BN_ULONG *rptr, my $aptr="%rsi"; # const BN_ULONG *aptr, my $bptr="%rdx"; # not used my $nptr="%rcx"; # const BN_ULONG *nptr, my $n0 ="%r8"; # const BN_ULONG *n0); my $num ="%r9"; # int num, has to be divisible by 8 my ($i,$j,$tptr)=("%rbp","%rcx",$rptr); my @A0=("%r10","%r11"); my @A1=("%r12","%r13"); my ($a0,$a1,$ai)=("%r14","%r15","%rbx"); $code.=<<___ if ($addx); .extern bn_sqrx8x_internal # see x86_64-mont5 module ___ $code.=<<___; .extern bn_sqr8x_internal # see x86_64-mont5 module .type bn_sqr8x_mont,\@function,6 .align 32 bn_sqr8x_mont: .cfi_startproc mov %rsp,%rax .cfi_def_cfa_register %rax .Lsqr8x_enter: push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lsqr8x_prologue: mov ${num}d,%r10d shl \$3,${num}d # convert $num to bytes shl \$3+2,%r10 # 4*$num neg $num ############################################################## # ensure that stack frame doesn't alias with $aptr modulo # 4096. this is done to allow memory disambiguation logic # do its job. # lea -64(%rsp,$num,2),%r11 mov %rsp,%rbp mov ($n0),$n0 # *n0 sub $aptr,%r11 and \$4095,%r11 cmp %r11,%r10 jb .Lsqr8x_sp_alt sub %r11,%rbp # align with $aptr lea -64(%rbp,$num,2),%rbp # future alloca(frame+2*$num) jmp .Lsqr8x_sp_done .align 32 .Lsqr8x_sp_alt: lea 4096-64(,$num,2),%r10 # 4096-frame-2*$num lea -64(%rbp,$num,2),%rbp # future alloca(frame+2*$num) sub %r10,%r11 mov \$0,%r10 cmovc %r10,%r11 sub %r11,%rbp .Lsqr8x_sp_done: and \$-64,%rbp mov %rsp,%r11 sub %rbp,%r11 and \$-4096,%r11 lea (%rbp,%r11),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lsqr8x_page_walk jmp .Lsqr8x_page_walk_done .align 16 .Lsqr8x_page_walk: lea -4096(%rsp),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lsqr8x_page_walk .Lsqr8x_page_walk_done: mov $num,%r10 neg $num mov $n0, 32(%rsp) mov %rax, 40(%rsp) # save original %rsp .cfi_cfa_expression %rsp+40,deref,+8 .Lsqr8x_body: movq $nptr, %xmm2 # save pointer to modulus pxor %xmm0,%xmm0 movq $rptr,%xmm1 # save $rptr movq %r10, %xmm3 # -$num ___ $code.=<<___ if ($addx); leaq OPENSSL_ia32cap_P(%rip),%rax mov 8(%rax),%eax and \$0x80100,%eax cmp \$0x80100,%eax jne .Lsqr8x_nox call bn_sqrx8x_internal # see x86_64-mont5 module # %rax top-most carry # %rbp nptr # %rcx -8*num # %r8 end of tp[2*num] lea (%r8,%rcx),%rbx mov %rcx,$num mov %rcx,%rdx movq %xmm1,$rptr sar \$3+2,%rcx # %cf=0 jmp .Lsqr8x_sub .align 32 .Lsqr8x_nox: ___ $code.=<<___; call bn_sqr8x_internal # see x86_64-mont5 module # %rax top-most carry # %rbp nptr # %r8 -8*num # %rdi end of tp[2*num] lea (%rdi,$num),%rbx mov $num,%rcx mov $num,%rdx movq %xmm1,$rptr sar \$3+2,%rcx # %cf=0 jmp .Lsqr8x_sub .align 32 .Lsqr8x_sub: mov 8*0(%rbx),%r12 mov 8*1(%rbx),%r13 mov 8*2(%rbx),%r14 mov 8*3(%rbx),%r15 lea 8*4(%rbx),%rbx sbb 8*0(%rbp),%r12 sbb 8*1(%rbp),%r13 sbb 8*2(%rbp),%r14 sbb 8*3(%rbp),%r15 lea 8*4(%rbp),%rbp mov %r12,8*0($rptr) mov %r13,8*1($rptr) mov %r14,8*2($rptr) mov %r15,8*3($rptr) lea 8*4($rptr),$rptr inc %rcx # preserves %cf jnz .Lsqr8x_sub sbb \$0,%rax # top-most carry lea (%rbx,$num),%rbx # rewind lea ($rptr,$num),$rptr # rewind movq %rax,%xmm1 pxor %xmm0,%xmm0 pshufd \$0,%xmm1,%xmm1 mov 40(%rsp),%rsi # restore %rsp .cfi_def_cfa %rsi,8 jmp .Lsqr8x_cond_copy .align 32 .Lsqr8x_cond_copy: movdqa 16*0(%rbx),%xmm2 movdqa 16*1(%rbx),%xmm3 lea 16*2(%rbx),%rbx movdqu 16*0($rptr),%xmm4 movdqu 16*1($rptr),%xmm5 lea 16*2($rptr),$rptr movdqa %xmm0,-16*2(%rbx) # zero tp movdqa %xmm0,-16*1(%rbx) movdqa %xmm0,-16*2(%rbx,%rdx) movdqa %xmm0,-16*1(%rbx,%rdx) pcmpeqd %xmm1,%xmm0 pand %xmm1,%xmm2 pand %xmm1,%xmm3 pand %xmm0,%xmm4 pand %xmm0,%xmm5 pxor %xmm0,%xmm0 por %xmm2,%xmm4 por %xmm3,%xmm5 movdqu %xmm4,-16*2($rptr) movdqu %xmm5,-16*1($rptr) add \$32,$num jnz .Lsqr8x_cond_copy mov \$1,%rax mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lsqr8x_epilogue: ret .cfi_endproc .size bn_sqr8x_mont,.-bn_sqr8x_mont ___ }}} if ($addx) {{{ my $bp="%rdx"; # original value $code.=<<___; .type bn_mulx4x_mont,\@function,6 .align 32 bn_mulx4x_mont: .cfi_startproc mov %rsp,%rax .cfi_def_cfa_register %rax .Lmulx4x_enter: push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lmulx4x_prologue: shl \$3,${num}d # convert $num to bytes xor %r10,%r10 sub $num,%r10 # -$num mov ($n0),$n0 # *n0 lea -72(%rsp,%r10),%rbp # future alloca(frame+$num+8) and \$-128,%rbp mov %rsp,%r11 sub %rbp,%r11 and \$-4096,%r11 lea (%rbp,%r11),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lmulx4x_page_walk jmp .Lmulx4x_page_walk_done .align 16 .Lmulx4x_page_walk: lea -4096(%rsp),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lmulx4x_page_walk .Lmulx4x_page_walk_done: lea ($bp,$num),%r10 ############################################################## # Stack layout # +0 num # +8 off-loaded &b[i] # +16 end of b[num] # +24 saved n0 # +32 saved rp # +40 saved %rsp # +48 inner counter # +56 # +64 tmp[num+1] # mov $num,0(%rsp) # save $num shr \$5,$num mov %r10,16(%rsp) # end of b[num] sub \$1,$num mov $n0, 24(%rsp) # save *n0 mov $rp, 32(%rsp) # save $rp mov %rax,40(%rsp) # save original %rsp .cfi_cfa_expression %rsp+40,deref,+8 mov $num,48(%rsp) # inner counter jmp .Lmulx4x_body .align 32 .Lmulx4x_body: ___ my ($aptr, $bptr, $nptr, $tptr, $mi, $bi, $zero, $num)= ("%rsi","%rdi","%rcx","%rbx","%r8","%r9","%rbp","%rax"); my $rptr=$bptr; $code.=<<___; lea 8($bp),$bptr mov ($bp),%rdx # b[0], $bp==%rdx actually lea 64+32(%rsp),$tptr mov %rdx,$bi mulx 0*8($aptr),$mi,%rax # a[0]*b[0] mulx 1*8($aptr),%r11,%r14 # a[1]*b[0] add %rax,%r11 mov $bptr,8(%rsp) # off-load &b[i] mulx 2*8($aptr),%r12,%r13 # ... adc %r14,%r12 adc \$0,%r13 mov $mi,$bptr # borrow $bptr imulq 24(%rsp),$mi # "t[0]"*n0 xor $zero,$zero # cf=0, of=0 mulx 3*8($aptr),%rax,%r14 mov $mi,%rdx lea 4*8($aptr),$aptr adcx %rax,%r13 adcx $zero,%r14 # cf=0 mulx 0*8($nptr),%rax,%r10 adcx %rax,$bptr # discarded adox %r11,%r10 mulx 1*8($nptr),%rax,%r11 adcx %rax,%r10 adox %r12,%r11 .byte 0xc4,0x62,0xfb,0xf6,0xa1,0x10,0x00,0x00,0x00 # mulx 2*8($nptr),%rax,%r12 mov 48(%rsp),$bptr # counter value mov %r10,-4*8($tptr) adcx %rax,%r11 adox %r13,%r12 mulx 3*8($nptr),%rax,%r15 mov $bi,%rdx mov %r11,-3*8($tptr) adcx %rax,%r12 adox $zero,%r15 # of=0 lea 4*8($nptr),$nptr mov %r12,-2*8($tptr) jmp .Lmulx4x_1st .align 32 .Lmulx4x_1st: adcx $zero,%r15 # cf=0, modulo-scheduled mulx 0*8($aptr),%r10,%rax # a[4]*b[0] adcx %r14,%r10 mulx 1*8($aptr),%r11,%r14 # a[5]*b[0] adcx %rax,%r11 mulx 2*8($aptr),%r12,%rax # ... adcx %r14,%r12 mulx 3*8($aptr),%r13,%r14 .byte 0x67,0x67 mov $mi,%rdx adcx %rax,%r13 adcx $zero,%r14 # cf=0 lea 4*8($aptr),$aptr lea 4*8($tptr),$tptr adox %r15,%r10 mulx 0*8($nptr),%rax,%r15 adcx %rax,%r10 adox %r15,%r11 mulx 1*8($nptr),%rax,%r15 adcx %rax,%r11 adox %r15,%r12 mulx 2*8($nptr),%rax,%r15 mov %r10,-5*8($tptr) adcx %rax,%r12 mov %r11,-4*8($tptr) adox %r15,%r13 mulx 3*8($nptr),%rax,%r15 mov $bi,%rdx mov %r12,-3*8($tptr) adcx %rax,%r13 adox $zero,%r15 lea 4*8($nptr),$nptr mov %r13,-2*8($tptr) dec $bptr # of=0, pass cf jnz .Lmulx4x_1st mov 0(%rsp),$num # load num mov 8(%rsp),$bptr # re-load &b[i] adc $zero,%r15 # modulo-scheduled add %r15,%r14 sbb %r15,%r15 # top-most carry mov %r14,-1*8($tptr) jmp .Lmulx4x_outer .align 32 .Lmulx4x_outer: mov ($bptr),%rdx # b[i] lea 8($bptr),$bptr # b++ sub $num,$aptr # rewind $aptr mov %r15,($tptr) # save top-most carry lea 64+4*8(%rsp),$tptr sub $num,$nptr # rewind $nptr mulx 0*8($aptr),$mi,%r11 # a[0]*b[i] xor %ebp,%ebp # xor $zero,$zero # cf=0, of=0 mov %rdx,$bi mulx 1*8($aptr),%r14,%r12 # a[1]*b[i] adox -4*8($tptr),$mi adcx %r14,%r11 mulx 2*8($aptr),%r15,%r13 # ... adox -3*8($tptr),%r11 adcx %r15,%r12 adox -2*8($tptr),%r12 adcx $zero,%r13 adox $zero,%r13 mov $bptr,8(%rsp) # off-load &b[i] mov $mi,%r15 imulq 24(%rsp),$mi # "t[0]"*n0 xor %ebp,%ebp # xor $zero,$zero # cf=0, of=0 mulx 3*8($aptr),%rax,%r14 mov $mi,%rdx adcx %rax,%r13 adox -1*8($tptr),%r13 adcx $zero,%r14 lea 4*8($aptr),$aptr adox $zero,%r14 mulx 0*8($nptr),%rax,%r10 adcx %rax,%r15 # discarded adox %r11,%r10 mulx 1*8($nptr),%rax,%r11 adcx %rax,%r10 adox %r12,%r11 mulx 2*8($nptr),%rax,%r12 mov %r10,-4*8($tptr) adcx %rax,%r11 adox %r13,%r12 mulx 3*8($nptr),%rax,%r15 mov $bi,%rdx mov %r11,-3*8($tptr) lea 4*8($nptr),$nptr adcx %rax,%r12 adox $zero,%r15 # of=0 mov 48(%rsp),$bptr # counter value mov %r12,-2*8($tptr) jmp .Lmulx4x_inner .align 32 .Lmulx4x_inner: mulx 0*8($aptr),%r10,%rax # a[4]*b[i] adcx $zero,%r15 # cf=0, modulo-scheduled adox %r14,%r10 mulx 1*8($aptr),%r11,%r14 # a[5]*b[i] adcx 0*8($tptr),%r10 adox %rax,%r11 mulx 2*8($aptr),%r12,%rax # ... adcx 1*8($tptr),%r11 adox %r14,%r12 mulx 3*8($aptr),%r13,%r14 mov $mi,%rdx adcx 2*8($tptr),%r12 adox %rax,%r13 adcx 3*8($tptr),%r13 adox $zero,%r14 # of=0 lea 4*8($aptr),$aptr lea 4*8($tptr),$tptr adcx $zero,%r14 # cf=0 adox %r15,%r10 mulx 0*8($nptr),%rax,%r15 adcx %rax,%r10 adox %r15,%r11 mulx 1*8($nptr),%rax,%r15 adcx %rax,%r11 adox %r15,%r12 mulx 2*8($nptr),%rax,%r15 mov %r10,-5*8($tptr) adcx %rax,%r12 adox %r15,%r13 mulx 3*8($nptr),%rax,%r15 mov $bi,%rdx mov %r11,-4*8($tptr) mov %r12,-3*8($tptr) adcx %rax,%r13 adox $zero,%r15 lea 4*8($nptr),$nptr mov %r13,-2*8($tptr) dec $bptr # of=0, pass cf jnz .Lmulx4x_inner mov 0(%rsp),$num # load num mov 8(%rsp),$bptr # re-load &b[i] adc $zero,%r15 # modulo-scheduled sub 0*8($tptr),$zero # pull top-most carry adc %r15,%r14 sbb %r15,%r15 # top-most carry mov %r14,-1*8($tptr) cmp 16(%rsp),$bptr jne .Lmulx4x_outer lea 64(%rsp),$tptr sub $num,$nptr # rewind $nptr neg %r15 mov $num,%rdx shr \$3+2,$num # %cf=0 mov 32(%rsp),$rptr # restore rp jmp .Lmulx4x_sub .align 32 .Lmulx4x_sub: mov 8*0($tptr),%r11 mov 8*1($tptr),%r12 mov 8*2($tptr),%r13 mov 8*3($tptr),%r14 lea 8*4($tptr),$tptr sbb 8*0($nptr),%r11 sbb 8*1($nptr),%r12 sbb 8*2($nptr),%r13 sbb 8*3($nptr),%r14 lea 8*4($nptr),$nptr mov %r11,8*0($rptr) mov %r12,8*1($rptr) mov %r13,8*2($rptr) mov %r14,8*3($rptr) lea 8*4($rptr),$rptr dec $num # preserves %cf jnz .Lmulx4x_sub sbb \$0,%r15 # top-most carry lea 64(%rsp),$tptr sub %rdx,$rptr # rewind movq %r15,%xmm1 pxor %xmm0,%xmm0 pshufd \$0,%xmm1,%xmm1 mov 40(%rsp),%rsi # restore %rsp .cfi_def_cfa %rsi,8 jmp .Lmulx4x_cond_copy .align 32 .Lmulx4x_cond_copy: movdqa 16*0($tptr),%xmm2 movdqa 16*1($tptr),%xmm3 lea 16*2($tptr),$tptr movdqu 16*0($rptr),%xmm4 movdqu 16*1($rptr),%xmm5 lea 16*2($rptr),$rptr movdqa %xmm0,-16*2($tptr) # zero tp movdqa %xmm0,-16*1($tptr) pcmpeqd %xmm1,%xmm0 pand %xmm1,%xmm2 pand %xmm1,%xmm3 pand %xmm0,%xmm4 pand %xmm0,%xmm5 pxor %xmm0,%xmm0 por %xmm2,%xmm4 por %xmm3,%xmm5 movdqu %xmm4,-16*2($rptr) movdqu %xmm5,-16*1($rptr) sub \$32,%rdx jnz .Lmulx4x_cond_copy mov %rdx,($tptr) mov \$1,%rax mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lmulx4x_epilogue: ret .cfi_endproc .size bn_mulx4x_mont,.-bn_mulx4x_mont ___ }}} $code.=<<___; .asciz "Montgomery Multiplication for x86_64, CRYPTOGAMS by " .align 16 ___ # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type mul_handler,\@abi-omnipotent .align 16 mul_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # end of prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lcommon_seh_tail mov 192($context),%r10 # pull $num mov 8(%rax,%r10,8),%rax # pull saved stack pointer jmp .Lcommon_pop_regs .size mul_handler,.-mul_handler .type sqr_handler,\@abi-omnipotent .align 16 sqr_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # end of prologue label cmp %r10,%rbx # context->Rip<.Lsqr_prologue jb .Lcommon_seh_tail mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # body label cmp %r10,%rbx # context->Rip<.Lsqr_body jb .Lcommon_pop_regs mov 152($context),%rax # pull context->Rsp mov 8(%r11),%r10d # HandlerData[2] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=.Lsqr_epilogue jae .Lcommon_seh_tail mov 40(%rax),%rax # pull saved stack pointer .Lcommon_pop_regs: mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov -48(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 .Lcommon_seh_tail: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size sqr_handler,.-sqr_handler .section .pdata .align 4 .rva .LSEH_begin_bn_mul_mont .rva .LSEH_end_bn_mul_mont .rva .LSEH_info_bn_mul_mont .rva .LSEH_begin_bn_mul4x_mont .rva .LSEH_end_bn_mul4x_mont .rva .LSEH_info_bn_mul4x_mont .rva .LSEH_begin_bn_sqr8x_mont .rva .LSEH_end_bn_sqr8x_mont .rva .LSEH_info_bn_sqr8x_mont ___ $code.=<<___ if ($addx); .rva .LSEH_begin_bn_mulx4x_mont .rva .LSEH_end_bn_mulx4x_mont .rva .LSEH_info_bn_mulx4x_mont ___ $code.=<<___; .section .xdata .align 8 .LSEH_info_bn_mul_mont: .byte 9,0,0,0 .rva mul_handler .rva .Lmul_body,.Lmul_epilogue # HandlerData[] .LSEH_info_bn_mul4x_mont: .byte 9,0,0,0 .rva mul_handler .rva .Lmul4x_body,.Lmul4x_epilogue # HandlerData[] .LSEH_info_bn_sqr8x_mont: .byte 9,0,0,0 .rva sqr_handler .rva .Lsqr8x_prologue,.Lsqr8x_body,.Lsqr8x_epilogue # HandlerData[] .align 8 ___ $code.=<<___ if ($addx); .LSEH_info_bn_mulx4x_mont: .byte 9,0,0,0 .rva sqr_handler .rva .Lmulx4x_prologue,.Lmulx4x_body,.Lmulx4x_epilogue # HandlerData[] .align 8 ___ } print $code; close STDOUT or die "error closing STDOUT: $!";