/* * Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2014, Intel Corporation. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1) * (1) Intel Corporation, Israel Development Center, Haifa, Israel * (2) University of Haifa, Israel * * Reference: * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with * 256 Bit Primes" */ #include #include "../../limbs/limbs.inl" #include #include "p256-nistz.h" #if defined(OPENSSL_USE_NISTZ256) typedef P256_POINT_AFFINE PRECOMP256_ROW[64]; // One converted into the Montgomery domain static const BN_ULONG ONE[P256_LIMBS] = { TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000), TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe), }; // Precomputed tables for the default generator #include "p256-nistz-table.h" // Recode window to a signed digit, see |nistp_recode_scalar_bits| in // util.c for details static crypto_word_t booth_recode_w5(crypto_word_t in) { crypto_word_t s, d; s = ~((in >> 5) - 1); d = (1 << 6) - in - 1; d = (d & s) | (in & ~s); d = (d >> 1) + (d & 1); return (d << 1) + (s & 1); } static crypto_word_t booth_recode_w7(crypto_word_t in) { crypto_word_t s, d; s = ~((in >> 7) - 1); d = (1 << 8) - in - 1; d = (d & s) | (in & ~s); d = (d >> 1) + (d & 1); return (d << 1) + (s & 1); } // The `(P256_LIMBS == 8)` case is unreachable for 64-bit targets. #if defined(OPENSSL_64_BIT) && defined(__clang__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunreachable-code" #endif // copy_conditional copies |src| to |dst| if |move| is one and leaves it as-is // if |move| is zero. // // WARNING: this breaks the usual convention of constant-time functions // returning masks. static void copy_conditional(BN_ULONG dst[P256_LIMBS], const BN_ULONG src[P256_LIMBS], BN_ULONG move) { BN_ULONG mask1 = ((BN_ULONG)0) - move; BN_ULONG mask2 = ~mask1; dst[0] = (src[0] & mask1) ^ (dst[0] & mask2); dst[1] = (src[1] & mask1) ^ (dst[1] & mask2); dst[2] = (src[2] & mask1) ^ (dst[2] & mask2); dst[3] = (src[3] & mask1) ^ (dst[3] & mask2); if (P256_LIMBS == 8) { dst[4] = (src[4] & mask1) ^ (dst[4] & mask2); dst[5] = (src[5] & mask1) ^ (dst[5] & mask2); dst[6] = (src[6] & mask1) ^ (dst[6] & mask2); dst[7] = (src[7] & mask1) ^ (dst[7] & mask2); } } #if defined(__clang__) #pragma GCC diagnostic pop #endif // is_not_zero returns one iff in != 0 and zero otherwise. // // WARNING: this breaks the usual convention of constant-time functions // returning masks. // // (define-fun is_not_zero ((in (_ BitVec 64))) (_ BitVec 64) // (bvlshr (bvor in (bvsub #x0000000000000000 in)) #x000000000000003f) // ) // // (declare-fun x () (_ BitVec 64)) // // (assert (and (= x #x0000000000000000) (= (is_not_zero x) #x0000000000000001))) // (check-sat) // // (assert (and (not (= x #x0000000000000000)) (= (is_not_zero x) #x0000000000000000))) // (check-sat) // static BN_ULONG is_not_zero(BN_ULONG in) { in |= (0 - in); in >>= BN_BITS2 - 1; return in; } // r = p * p_scalar static void ecp_nistz256_windowed_mul(P256_POINT *r, const BN_ULONG p_scalar[P256_LIMBS], const BN_ULONG p_x[P256_LIMBS], const BN_ULONG p_y[P256_LIMBS]) { debug_assert_nonsecret(r != NULL); debug_assert_nonsecret(p_scalar != NULL); debug_assert_nonsecret(p_x != NULL); debug_assert_nonsecret(p_y != NULL); static const size_t kWindowSize = 5; static const crypto_word_t kMask = (1 << (5 /* kWindowSize */ + 1)) - 1; // A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should // add no more than 63 bytes of overhead. Thus, |table| should require // ~1599 ((96 * 16) + 63) bytes of stack space. alignas(64) P256_POINT table[16]; P256_SCALAR_BYTES p_str; p256_scalar_bytes_from_limbs(p_str, p_scalar); // table[0] is implicitly (0,0,0) (the point at infinity), therefore it is // not stored. All other values are actually stored with an offset of -1 in // table. P256_POINT *row = table; limbs_copy(row[1 - 1].X, p_x, P256_LIMBS); limbs_copy(row[1 - 1].Y, p_y, P256_LIMBS); limbs_copy(row[1 - 1].Z, ONE, P256_LIMBS); ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]); ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]); ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]); ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]); ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]); ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]); ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]); ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]); ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]); ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]); ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]); ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]); ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]); ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]); ecp_nistz256_point_double(&row[16 - 1], &row[8 - 1]); BN_ULONG tmp[P256_LIMBS]; alignas(32) P256_POINT h; size_t index = 255; crypto_word_t wvalue = p_str[(index - 1) / 8]; wvalue = (wvalue >> ((index - 1) % 8)) & kMask; ecp_nistz256_select_w5(r, table, (int)(booth_recode_w5(wvalue) >> 1)); while (index >= 5) { if (index != 255) { size_t off = (index - 1) / 8; wvalue = (crypto_word_t)p_str[off] | (crypto_word_t)p_str[off + 1] << 8; wvalue = (wvalue >> ((index - 1) % 8)) & kMask; wvalue = booth_recode_w5(wvalue); ecp_nistz256_select_w5(&h, table, (int)(wvalue >> 1)); ecp_nistz256_neg(tmp, h.Y); copy_conditional(h.Y, tmp, (wvalue & 1)); ecp_nistz256_point_add(r, r, &h); } index -= kWindowSize; ecp_nistz256_point_double(r, r); ecp_nistz256_point_double(r, r); ecp_nistz256_point_double(r, r); ecp_nistz256_point_double(r, r); ecp_nistz256_point_double(r, r); } // Final window wvalue = p_str[0]; wvalue = (wvalue << 1) & kMask; wvalue = booth_recode_w5(wvalue); ecp_nistz256_select_w5(&h, table, (int)(wvalue >> 1)); ecp_nistz256_neg(tmp, h.Y); copy_conditional(h.Y, tmp, wvalue & 1); ecp_nistz256_point_add(r, r, &h); } static crypto_word_t calc_first_wvalue(size_t *index, const uint8_t p_str[33]) { static const size_t kWindowSize = 7; static const crypto_word_t kMask = (1 << (7 /* kWindowSize */ + 1)) - 1; *index = kWindowSize; crypto_word_t wvalue = ((crypto_word_t)p_str[0] << 1) & kMask; return booth_recode_w7(wvalue); } static crypto_word_t calc_wvalue(size_t *index, const uint8_t p_str[33]) { static const size_t kWindowSize = 7; static const crypto_word_t kMask = (1 << (7 /* kWindowSize */ + 1)) - 1; const size_t off = (*index - 1) / 8; crypto_word_t wvalue = (crypto_word_t)p_str[off] | (crypto_word_t)p_str[off + 1] << 8; wvalue = (wvalue >> ((*index - 1) % 8)) & kMask; *index += kWindowSize; return booth_recode_w7(wvalue); } void p256_point_mul(Limb r[3][P256_LIMBS], const Limb p_scalar[P256_LIMBS], const Limb p_x[P256_LIMBS], const Limb p_y[P256_LIMBS]) { alignas(32) P256_POINT out; ecp_nistz256_windowed_mul(&out, p_scalar, p_x, p_y); limbs_copy(r[0], out.X, P256_LIMBS); limbs_copy(r[1], out.Y, P256_LIMBS); limbs_copy(r[2], out.Z, P256_LIMBS); } void p256_point_mul_base(Limb r[3][P256_LIMBS], const Limb scalar[P256_LIMBS]) { P256_SCALAR_BYTES p_str; p256_scalar_bytes_from_limbs(p_str, scalar); // First window size_t index = 0; crypto_word_t wvalue = calc_first_wvalue(&index, p_str); alignas(32) P256_POINT_AFFINE t; alignas(32) P256_POINT p; ecp_nistz256_select_w7(&t, ecp_nistz256_precomputed[0], (int)(wvalue >> 1)); ecp_nistz256_neg(p.Z, t.Y); copy_conditional(t.Y, p.Z, wvalue & 1); // Convert |t| from affine to Jacobian coordinates. We set Z to zero if |t| // is infinity and |ONE| otherwise. |t| was computed from the table, so it // is infinity iff |wvalue >> 1| is zero. limbs_copy(p.X, t.X, P256_LIMBS); limbs_copy(p.Y, t.Y, P256_LIMBS); limbs_zero(p.Z, P256_LIMBS); copy_conditional(p.Z, ONE, is_not_zero(wvalue >> 1)); for (int i = 1; i < 37; i++) { wvalue = calc_wvalue(&index, p_str); ecp_nistz256_select_w7(&t, ecp_nistz256_precomputed[i], (int)(wvalue >> 1)); alignas(32) BN_ULONG neg_Y[P256_LIMBS]; ecp_nistz256_neg(neg_Y, t.Y); copy_conditional(t.Y, neg_Y, wvalue & 1); // Note |ecp_nistz256_point_add_affine| does not work if |p| and |t| are the // same non-infinity point. ecp_nistz256_point_add_affine(&p, &p, &t); } limbs_copy(r[0], p.X, P256_LIMBS); limbs_copy(r[1], p.Y, P256_LIMBS); limbs_copy(r[2], p.Z, P256_LIMBS); } void p256_point_mul_base_vartime(Limb r[3][P256_LIMBS], const Limb g_scalar[P256_LIMBS]) { alignas(32) P256_POINT p; uint8_t p_str[33]; OPENSSL_memcpy(p_str, g_scalar, 32); p_str[32] = 0; // First window size_t index = 0; size_t wvalue = calc_first_wvalue(&index, p_str); // Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p| // is infinity and |ONE| otherwise. |p| was computed from the table, so it // is infinity iff |wvalue >> 1| is zero. if ((wvalue >> 1) != 0) { OPENSSL_memcpy(p.X, &ecp_nistz256_precomputed[0][(wvalue >> 1) - 1].X, sizeof(p.X)); OPENSSL_memcpy(p.Y, &ecp_nistz256_precomputed[0][(wvalue >> 1) - 1].Y, sizeof(p.Y)); OPENSSL_memcpy(p.Z, ONE, sizeof(p.Z)); } else { OPENSSL_memset(p.X, 0, sizeof(p.X)); OPENSSL_memset(p.Y, 0, sizeof(p.Y)); OPENSSL_memset(p.Z, 0, sizeof(p.Z)); } if ((wvalue & 1) == 1) { ecp_nistz256_neg(p.Y, p.Y); } for (int i = 1; i < 37; i++) { wvalue = calc_wvalue(&index, p_str); if ((wvalue >> 1) == 0) { continue; } alignas(32) P256_POINT_AFFINE t; OPENSSL_memcpy(&t, &ecp_nistz256_precomputed[i][(wvalue >> 1) - 1], sizeof(t)); if ((wvalue & 1) == 1) { ecp_nistz256_neg(t.Y, t.Y); } // Note |ecp_nistz256_point_add_affine| does not work if |p| and |t| are // the same non-infinity point, so it is important that we compute the // |g_scalar| term before the |p_scalar| term. ecp_nistz256_point_add_affine(&p, &p, &t); } limbs_copy(r[0], p.X, P256_LIMBS); limbs_copy(r[1], p.Y, P256_LIMBS); limbs_copy(r[2], p.Z, P256_LIMBS); } #endif /* defined(OPENSSL_USE_NISTZ256) */