#! /usr/bin/env perl # Copyright 2007-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # # Permission to use under GPL terms is granted. # ==================================================================== # SHA256 block procedure for ARMv4. May 2007. # Performance is ~2x better than gcc 3.4 generated code and in "abso- # lute" terms is ~2250 cycles per 64-byte block or ~35 cycles per # byte [on single-issue Xscale PXA250 core]. # July 2010. # # Rescheduling for dual-issue pipeline resulted in 22% improvement on # Cortex A8 core and ~20 cycles per processed byte. # February 2011. # # Profiler-assisted and platform-specific optimization resulted in 16% # improvement on Cortex A8 core and ~15.4 cycles per processed byte. # September 2013. # # Add NEON implementation. On Cortex A8 it was measured to process one # byte in 12.5 cycles or 23% faster than integer-only code. Snapdragon # S4 does it in 12.5 cycles too, but it's 50% faster than integer-only # code (meaning that latter performs sub-optimally, nothing was done # about it). # May 2014. # # Add ARMv8 code path performing at 2.0 cpb on Apple A7. $flavour = shift; if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; } else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} } if ($flavour && $flavour ne "void") { $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; } else { open OUT,">$output"; *STDOUT=*OUT; } $ctx="r0"; $t0="r0"; $inp="r1"; $t4="r1"; $len="r2"; $t1="r2"; $T1="r3"; $t3="r3"; $A="r4"; $B="r5"; $C="r6"; $D="r7"; $E="r8"; $F="r9"; $G="r10"; $H="r11"; @V=($A,$B,$C,$D,$E,$F,$G,$H); $t2="r12"; $Ktbl="r14"; @Sigma0=( 2,13,22); @Sigma1=( 6,11,25); @sigma0=( 7,18, 3); @sigma1=(17,19,10); sub BODY_00_15 { my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_; $code.=<<___ if ($i<16); #if __ARM_ARCH__>=7 @ ldr $t1,[$inp],#4 @ $i # if $i==15 str $inp,[sp,#17*4] @ make room for $t4 # endif eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]` add $a,$a,$t2 @ h+=Maj(a,b,c) from the past eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]` @ Sigma1(e) # ifndef __ARMEB__ rev $t1,$t1 # endif #else @ ldrb $t1,[$inp,#3] @ $i add $a,$a,$t2 @ h+=Maj(a,b,c) from the past ldrb $t2,[$inp,#2] ldrb $t0,[$inp,#1] orr $t1,$t1,$t2,lsl#8 ldrb $t2,[$inp],#4 orr $t1,$t1,$t0,lsl#16 # if $i==15 str $inp,[sp,#17*4] @ make room for $t4 # endif eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]` orr $t1,$t1,$t2,lsl#24 eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]` @ Sigma1(e) #endif ___ $code.=<<___; ldr $t2,[$Ktbl],#4 @ *K256++ add $h,$h,$t1 @ h+=X[i] str $t1,[sp,#`$i%16`*4] eor $t1,$f,$g add $h,$h,$t0,ror#$Sigma1[0] @ h+=Sigma1(e) and $t1,$t1,$e add $h,$h,$t2 @ h+=K256[i] eor $t1,$t1,$g @ Ch(e,f,g) eor $t0,$a,$a,ror#`$Sigma0[1]-$Sigma0[0]` add $h,$h,$t1 @ h+=Ch(e,f,g) #if $i==31 and $t2,$t2,#0xff cmp $t2,#0xf2 @ done? #endif #if $i<15 # if __ARM_ARCH__>=7 ldr $t1,[$inp],#4 @ prefetch # else ldrb $t1,[$inp,#3] # endif eor $t2,$a,$b @ a^b, b^c in next round #else ldr $t1,[sp,#`($i+2)%16`*4] @ from future BODY_16_xx eor $t2,$a,$b @ a^b, b^c in next round ldr $t4,[sp,#`($i+15)%16`*4] @ from future BODY_16_xx #endif eor $t0,$t0,$a,ror#`$Sigma0[2]-$Sigma0[0]` @ Sigma0(a) and $t3,$t3,$t2 @ (b^c)&=(a^b) add $d,$d,$h @ d+=h eor $t3,$t3,$b @ Maj(a,b,c) add $h,$h,$t0,ror#$Sigma0[0] @ h+=Sigma0(a) @ add $h,$h,$t3 @ h+=Maj(a,b,c) ___ ($t2,$t3)=($t3,$t2); } sub BODY_16_XX { my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_; $code.=<<___; @ ldr $t1,[sp,#`($i+1)%16`*4] @ $i @ ldr $t4,[sp,#`($i+14)%16`*4] mov $t0,$t1,ror#$sigma0[0] add $a,$a,$t2 @ h+=Maj(a,b,c) from the past mov $t2,$t4,ror#$sigma1[0] eor $t0,$t0,$t1,ror#$sigma0[1] eor $t2,$t2,$t4,ror#$sigma1[1] eor $t0,$t0,$t1,lsr#$sigma0[2] @ sigma0(X[i+1]) ldr $t1,[sp,#`($i+0)%16`*4] eor $t2,$t2,$t4,lsr#$sigma1[2] @ sigma1(X[i+14]) ldr $t4,[sp,#`($i+9)%16`*4] add $t2,$t2,$t0 eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]` @ from BODY_00_15 add $t1,$t1,$t2 eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]` @ Sigma1(e) add $t1,$t1,$t4 @ X[i] ___ &BODY_00_15(@_); } $code=<<___; #ifndef __KERNEL__ # include #else # define __ARM_ARCH__ __LINUX_ARM_ARCH__ # define __ARM_MAX_ARCH__ 7 #endif @ Silence ARMv8 deprecated IT instruction warnings. This file is used by both @ ARMv7 and ARMv8 processors. It does have ARMv8-only code, but those @ instructions are manually-encoded. (See unsha256.) .arch armv7-a .text #if defined(__thumb2__) .syntax unified .thumb #else .code 32 #endif .type K256,%object .align 5 K256: .word 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 .word 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 .word 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 .word 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 .word 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc .word 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da .word 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 .word 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 .word 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 .word 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 .word 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 .word 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 .word 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 .word 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 .word 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 .word 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 .size K256,.-K256 .word 0 @ terminator #if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__) .extern OPENSSL_armcap_P .hidden OPENSSL_armcap_P .LOPENSSL_armcap: .word OPENSSL_armcap_P-.Lsha256_block_data_order #endif .align 5 .global sha256_block_data_order .type sha256_block_data_order,%function sha256_block_data_order: .Lsha256_block_data_order: #if __ARM_ARCH__<7 && !defined(__thumb2__) sub r3,pc,#8 @ sha256_block_data_order #else adr r3,.Lsha256_block_data_order #endif #if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__) ldr r12,.LOPENSSL_armcap ldr r12,[r3,r12] @ OPENSSL_armcap_P #ifdef __APPLE__ ldr r12,[r12] #endif tst r12,#ARMV8_SHA256 bne .LARMv8 tst r12,#ARMV7_NEON bne .LNEON #endif add $len,$inp,$len,lsl#6 @ len to point at the end of inp stmdb sp!,{$ctx,$inp,$len,r4-r11,lr} ldmia $ctx,{$A,$B,$C,$D,$E,$F,$G,$H} sub $Ktbl,r3,#256+32 @ K256 sub sp,sp,#16*4 @ alloca(X[16]) .Loop: # if __ARM_ARCH__>=7 ldr $t1,[$inp],#4 # else ldrb $t1,[$inp,#3] # endif eor $t3,$B,$C @ magic eor $t2,$t2,$t2 ___ for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); } $code.=".Lrounds_16_xx:\n"; for (;$i<32;$i++) { &BODY_16_XX($i,@V); unshift(@V,pop(@V)); } $code.=<<___; #if __ARM_ARCH__>=7 ite eq @ Thumb2 thing, sanity check in ARM #endif ldreq $t3,[sp,#16*4] @ pull ctx bne .Lrounds_16_xx add $A,$A,$t2 @ h+=Maj(a,b,c) from the past ldr $t0,[$t3,#0] ldr $t1,[$t3,#4] ldr $t2,[$t3,#8] add $A,$A,$t0 ldr $t0,[$t3,#12] add $B,$B,$t1 ldr $t1,[$t3,#16] add $C,$C,$t2 ldr $t2,[$t3,#20] add $D,$D,$t0 ldr $t0,[$t3,#24] add $E,$E,$t1 ldr $t1,[$t3,#28] add $F,$F,$t2 ldr $inp,[sp,#17*4] @ pull inp ldr $t2,[sp,#18*4] @ pull inp+len add $G,$G,$t0 add $H,$H,$t1 stmia $t3,{$A,$B,$C,$D,$E,$F,$G,$H} cmp $inp,$t2 sub $Ktbl,$Ktbl,#256 @ rewind Ktbl bne .Loop add sp,sp,#`16+3`*4 @ destroy frame #if __ARM_ARCH__>=5 ldmia sp!,{r4-r11,pc} #else ldmia sp!,{r4-r11,lr} tst lr,#1 moveq pc,lr @ be binary compatible with V4, yet bx lr @ interoperable with Thumb ISA:-) #endif .size sha256_block_data_order,.-sha256_block_data_order ___ ###################################################################### # NEON stuff # {{{ my @X=map("q$_",(0..3)); my ($T0,$T1,$T2,$T3,$T4,$T5)=("q8","q9","q10","q11","d24","d25"); my $Xfer=$t4; my $j=0; sub Dlo() { shift=~m|q([1]?[0-9])|?"d".($1*2):""; } sub Dhi() { shift=~m|q([1]?[0-9])|?"d".($1*2+1):""; } sub AUTOLOAD() # thunk [simplified] x86-style perlasm { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./; my $arg = pop; $arg = "#$arg" if ($arg*1 eq $arg); $code .= "\t$opcode\t".join(',',@_,$arg)."\n"; } sub Xupdate() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); my ($a,$b,$c,$d,$e,$f,$g,$h); &vext_8 ($T0,@X[0],@X[1],4); # X[1..4] eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vext_8 ($T1,@X[2],@X[3],4); # X[9..12] eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 ($T2,$T0,$sigma0[0]); eval(shift(@insns)); eval(shift(@insns)); &vadd_i32 (@X[0],@X[0],$T1); # X[0..3] += X[9..12] eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 ($T1,$T0,$sigma0[2]); eval(shift(@insns)); eval(shift(@insns)); &vsli_32 ($T2,$T0,32-$sigma0[0]); eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 ($T3,$T0,$sigma0[1]); eval(shift(@insns)); eval(shift(@insns)); &veor ($T1,$T1,$T2); eval(shift(@insns)); eval(shift(@insns)); &vsli_32 ($T3,$T0,32-$sigma0[1]); eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 ($T4,&Dhi(@X[3]),$sigma1[0]); eval(shift(@insns)); eval(shift(@insns)); &veor ($T1,$T1,$T3); # sigma0(X[1..4]) eval(shift(@insns)); eval(shift(@insns)); &vsli_32 ($T4,&Dhi(@X[3]),32-$sigma1[0]); eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 ($T5,&Dhi(@X[3]),$sigma1[2]); eval(shift(@insns)); eval(shift(@insns)); &vadd_i32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4]) eval(shift(@insns)); eval(shift(@insns)); &veor ($T5,$T5,$T4); eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 ($T4,&Dhi(@X[3]),$sigma1[1]); eval(shift(@insns)); eval(shift(@insns)); &vsli_32 ($T4,&Dhi(@X[3]),32-$sigma1[1]); eval(shift(@insns)); eval(shift(@insns)); &veor ($T5,$T5,$T4); # sigma1(X[14..15]) eval(shift(@insns)); eval(shift(@insns)); &vadd_i32 (&Dlo(@X[0]),&Dlo(@X[0]),$T5);# X[0..1] += sigma1(X[14..15]) eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 ($T4,&Dlo(@X[0]),$sigma1[0]); eval(shift(@insns)); eval(shift(@insns)); &vsli_32 ($T4,&Dlo(@X[0]),32-$sigma1[0]); eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 ($T5,&Dlo(@X[0]),$sigma1[2]); eval(shift(@insns)); eval(shift(@insns)); &veor ($T5,$T5,$T4); eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 ($T4,&Dlo(@X[0]),$sigma1[1]); eval(shift(@insns)); eval(shift(@insns)); &vld1_32 ("{$T0}","[$Ktbl,:128]!"); eval(shift(@insns)); eval(shift(@insns)); &vsli_32 ($T4,&Dlo(@X[0]),32-$sigma1[1]); eval(shift(@insns)); eval(shift(@insns)); &veor ($T5,$T5,$T4); # sigma1(X[16..17]) eval(shift(@insns)); eval(shift(@insns)); &vadd_i32 (&Dhi(@X[0]),&Dhi(@X[0]),$T5);# X[2..3] += sigma1(X[16..17]) eval(shift(@insns)); eval(shift(@insns)); &vadd_i32 ($T0,$T0,@X[0]); while($#insns>=2) { eval(shift(@insns)); } &vst1_32 ("{$T0}","[$Xfer,:128]!"); eval(shift(@insns)); eval(shift(@insns)); push(@X,shift(@X)); # "rotate" X[] } sub Xpreload() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); my ($a,$b,$c,$d,$e,$f,$g,$h); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vld1_32 ("{$T0}","[$Ktbl,:128]!"); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vrev32_8 (@X[0],@X[0]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vadd_i32 ($T0,$T0,@X[0]); foreach (@insns) { eval; } # remaining instructions &vst1_32 ("{$T0}","[$Xfer,:128]!"); push(@X,shift(@X)); # "rotate" X[] } sub body_00_15 () { ( '($a,$b,$c,$d,$e,$f,$g,$h)=@V;'. '&add ($h,$h,$t1)', # h+=X[i]+K[i] '&eor ($t1,$f,$g)', '&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))', '&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past '&and ($t1,$t1,$e)', '&eor ($t2,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e) '&eor ($t0,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))', '&eor ($t1,$t1,$g)', # Ch(e,f,g) '&add ($h,$h,$t2,"ror#$Sigma1[0]")', # h+=Sigma1(e) '&eor ($t2,$a,$b)', # a^b, b^c in next round '&eor ($t0,$t0,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a) '&add ($h,$h,$t1)', # h+=Ch(e,f,g) '&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'. '&ldr ($t1,"[$Ktbl]") if ($j==15);'. '&ldr ($t1,"[sp,#64]") if ($j==31)', '&and ($t3,$t3,$t2)', # (b^c)&=(a^b) '&add ($d,$d,$h)', # d+=h '&add ($h,$h,$t0,"ror#$Sigma0[0]");'. # h+=Sigma0(a) '&eor ($t3,$t3,$b)', # Maj(a,b,c) '$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);' ) } $code.=<<___; #if __ARM_MAX_ARCH__>=7 .arch armv7-a .fpu neon .type sha256_block_data_order_neon,%function .align 5 .skip 16 sha256_block_data_order_neon: .LNEON: stmdb sp!,{r4-r12,lr} sub $H,sp,#16*4+16 adr $Ktbl,K256 bic $H,$H,#15 @ align for 128-bit stores mov $t2,sp mov sp,$H @ alloca add $len,$inp,$len,lsl#6 @ len to point at the end of inp vld1.8 {@X[0]},[$inp]! vld1.8 {@X[1]},[$inp]! vld1.8 {@X[2]},[$inp]! vld1.8 {@X[3]},[$inp]! vld1.32 {$T0},[$Ktbl,:128]! vld1.32 {$T1},[$Ktbl,:128]! vld1.32 {$T2},[$Ktbl,:128]! vld1.32 {$T3},[$Ktbl,:128]! vrev32.8 @X[0],@X[0] @ yes, even on str $ctx,[sp,#64] vrev32.8 @X[1],@X[1] @ big-endian str $inp,[sp,#68] mov $Xfer,sp vrev32.8 @X[2],@X[2] str $len,[sp,#72] vrev32.8 @X[3],@X[3] str $t2,[sp,#76] @ save original sp vadd.i32 $T0,$T0,@X[0] vadd.i32 $T1,$T1,@X[1] vst1.32 {$T0},[$Xfer,:128]! vadd.i32 $T2,$T2,@X[2] vst1.32 {$T1},[$Xfer,:128]! vadd.i32 $T3,$T3,@X[3] vst1.32 {$T2},[$Xfer,:128]! vst1.32 {$T3},[$Xfer,:128]! ldmia $ctx,{$A-$H} sub $Xfer,$Xfer,#64 ldr $t1,[sp,#0] eor $t2,$t2,$t2 eor $t3,$B,$C b .L_00_48 .align 4 .L_00_48: ___ &Xupdate(\&body_00_15); &Xupdate(\&body_00_15); &Xupdate(\&body_00_15); &Xupdate(\&body_00_15); $code.=<<___; teq $t1,#0 @ check for K256 terminator ldr $t1,[sp,#0] sub $Xfer,$Xfer,#64 bne .L_00_48 ldr $inp,[sp,#68] ldr $t0,[sp,#72] sub $Ktbl,$Ktbl,#256 @ rewind $Ktbl teq $inp,$t0 it eq subeq $inp,$inp,#64 @ avoid SEGV vld1.8 {@X[0]},[$inp]! @ load next input block vld1.8 {@X[1]},[$inp]! vld1.8 {@X[2]},[$inp]! vld1.8 {@X[3]},[$inp]! it ne strne $inp,[sp,#68] mov $Xfer,sp ___ &Xpreload(\&body_00_15); &Xpreload(\&body_00_15); &Xpreload(\&body_00_15); &Xpreload(\&body_00_15); $code.=<<___; ldr $t0,[$t1,#0] add $A,$A,$t2 @ h+=Maj(a,b,c) from the past ldr $t2,[$t1,#4] ldr $t3,[$t1,#8] ldr $t4,[$t1,#12] add $A,$A,$t0 @ accumulate ldr $t0,[$t1,#16] add $B,$B,$t2 ldr $t2,[$t1,#20] add $C,$C,$t3 ldr $t3,[$t1,#24] add $D,$D,$t4 ldr $t4,[$t1,#28] add $E,$E,$t0 str $A,[$t1],#4 add $F,$F,$t2 str $B,[$t1],#4 add $G,$G,$t3 str $C,[$t1],#4 add $H,$H,$t4 str $D,[$t1],#4 stmia $t1,{$E-$H} ittte ne movne $Xfer,sp ldrne $t1,[sp,#0] eorne $t2,$t2,$t2 ldreq sp,[sp,#76] @ restore original sp itt ne eorne $t3,$B,$C bne .L_00_48 ldmia sp!,{r4-r12,pc} .size sha256_block_data_order_neon,.-sha256_block_data_order_neon #endif ___ }}} ###################################################################### # ARMv8 stuff # {{{ my ($ABCD,$EFGH,$abcd)=map("q$_",(0..2)); my @MSG=map("q$_",(8..11)); my ($W0,$W1,$ABCD_SAVE,$EFGH_SAVE)=map("q$_",(12..15)); my $Ktbl="r3"; $code.=<<___; #if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__) # if defined(__thumb2__) # define INST(a,b,c,d) .byte c,d|0xc,a,b # else # define INST(a,b,c,d) .byte a,b,c,d # endif .type sha256_block_data_order_armv8,%function .align 5 sha256_block_data_order_armv8: .LARMv8: vld1.32 {$ABCD,$EFGH},[$ctx] sub $Ktbl,$Ktbl,#256+32 add $len,$inp,$len,lsl#6 @ len to point at the end of inp b .Loop_v8 .align 4 .Loop_v8: vld1.8 {@MSG[0]-@MSG[1]},[$inp]! vld1.8 {@MSG[2]-@MSG[3]},[$inp]! vld1.32 {$W0},[$Ktbl]! vrev32.8 @MSG[0],@MSG[0] vrev32.8 @MSG[1],@MSG[1] vrev32.8 @MSG[2],@MSG[2] vrev32.8 @MSG[3],@MSG[3] vmov $ABCD_SAVE,$ABCD @ offload vmov $EFGH_SAVE,$EFGH teq $inp,$len ___ for($i=0;$i<12;$i++) { $code.=<<___; vld1.32 {$W1},[$Ktbl]! vadd.i32 $W0,$W0,@MSG[0] sha256su0 @MSG[0],@MSG[1] vmov $abcd,$ABCD sha256h $ABCD,$EFGH,$W0 sha256h2 $EFGH,$abcd,$W0 sha256su1 @MSG[0],@MSG[2],@MSG[3] ___ ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG)); } $code.=<<___; vld1.32 {$W1},[$Ktbl]! vadd.i32 $W0,$W0,@MSG[0] vmov $abcd,$ABCD sha256h $ABCD,$EFGH,$W0 sha256h2 $EFGH,$abcd,$W0 vld1.32 {$W0},[$Ktbl]! vadd.i32 $W1,$W1,@MSG[1] vmov $abcd,$ABCD sha256h $ABCD,$EFGH,$W1 sha256h2 $EFGH,$abcd,$W1 vld1.32 {$W1},[$Ktbl] vadd.i32 $W0,$W0,@MSG[2] sub $Ktbl,$Ktbl,#256-16 @ rewind vmov $abcd,$ABCD sha256h $ABCD,$EFGH,$W0 sha256h2 $EFGH,$abcd,$W0 vadd.i32 $W1,$W1,@MSG[3] vmov $abcd,$ABCD sha256h $ABCD,$EFGH,$W1 sha256h2 $EFGH,$abcd,$W1 vadd.i32 $ABCD,$ABCD,$ABCD_SAVE vadd.i32 $EFGH,$EFGH,$EFGH_SAVE it ne bne .Loop_v8 vst1.32 {$ABCD,$EFGH},[$ctx] ret @ bx lr .size sha256_block_data_order_armv8,.-sha256_block_data_order_armv8 #endif ___ }}} $code.=<<___; .asciz "SHA256 block transform for ARMv4/NEON/ARMv8, CRYPTOGAMS by " ___ open SELF,$0; while() { next if (/^#!/); last if (!s/^#/@/ and !/^$/); print; } close SELF; { my %opcode = ( "sha256h" => 0xf3000c40, "sha256h2" => 0xf3100c40, "sha256su0" => 0xf3ba03c0, "sha256su1" => 0xf3200c40 ); sub unsha256 { my ($mnemonic,$arg)=@_; if ($arg =~ m/q([0-9]+)(?:,\s*q([0-9]+))?,\s*q([0-9]+)/o) { my $word = $opcode{$mnemonic}|(($1&7)<<13)|(($1&8)<<19) |(($2&7)<<17)|(($2&8)<<4) |(($3&7)<<1) |(($3&8)<<2); # since ARMv7 instructions are always encoded little-endian. # correct solution is to use .inst directive, but older # assemblers don't implement it:-( sprintf "INST(0x%02x,0x%02x,0x%02x,0x%02x)\t@ %s %s", $word&0xff,($word>>8)&0xff, ($word>>16)&0xff,($word>>24)&0xff, $mnemonic,$arg; } } } foreach (split($/,$code)) { s/\`([^\`]*)\`/eval $1/geo; s/\b(sha256\w+)\s+(q.*)/unsha256($1,$2)/geo; s/\bret\b/bx lr/go or s/\bbx\s+lr\b/.word\t0xe12fff1e/go; # make it possible to compile with -march=armv4 print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; # enforce flush