#!/usr/bin/env perl # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # This module implements Poly1305 hash for x86. # # April 2015 # # Numbers are cycles per processed byte with poly1305_blocks alone, # measured with rdtsc at fixed clock frequency. # # IALU/gcc-3.4(*) SSE2(**) AVX2 # Pentium 15.7/+80% - # PIII 6.21/+90% - # P4 19.8/+40% 3.24 # Core 2 4.85/+90% 1.80 # Westmere 4.58/+100% 1.43 # Sandy Bridge 3.90/+100% 1.36 # Haswell 3.88/+70% 1.18 0.72 # Silvermont 11.0/+40% 4.80 # VIA Nano 6.71/+90% 2.47 # Sledgehammer 3.51/+180% 4.27 # Bulldozer 4.53/+140% 1.31 # # (*) gcc 4.8 for some reason generated worse code; # (**) besides SSE2 there are floating-point and AVX options; FP # is deemed unnecessary, because pre-SSE2 processor are too # old to care about, while it's not the fastest option on # SSE2-capable ones; AVX is omitted, because it doesn't give # a lot of improvement, 5-10% depending on processor; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output=pop; open STDOUT,">$output"; &asm_init($ARGV[0],"poly1305-x86.pl",$ARGV[$#ARGV] eq "386"); $sse2=$avx=0; for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } if ($sse2) { &static_label("const_sse2"); &static_label("enter_blocks"); &static_label("enter_emit"); &external_label("GFp_ia32cap_P"); # This may be set to 2, but valgrind can't do AVX2 on 32-bit. Without a # way to verify test coverage, keep it disabled. # The AVX2 code was removed. $avx = 0; } ######################################################################## # Layout of opaque area is following. # # unsigned __int32 h[5]; # current hash value base 2^32 # unsigned __int32 pad; # is_base2_26 in vector context # unsigned __int32 r[4]; # key value base 2^32 &align(64); &function_begin("GFp_poly1305_init_asm"); &mov ("edi",&wparam(0)); # context &mov ("esi",&wparam(1)); # key &mov ("ebp",&wparam(2)); # function table &xor ("eax","eax"); &mov (&DWP(4*0,"edi"),"eax"); # zero hash value &mov (&DWP(4*1,"edi"),"eax"); &mov (&DWP(4*2,"edi"),"eax"); &mov (&DWP(4*3,"edi"),"eax"); &mov (&DWP(4*4,"edi"),"eax"); &mov (&DWP(4*5,"edi"),"eax"); # is_base2_26 &cmp ("esi",0); &je (&label("nokey")); if ($sse2) { &call (&label("pic_point")); &set_label("pic_point"); &blindpop("ebx"); &lea ("eax",&DWP("GFp_poly1305_blocks-".&label("pic_point"),"ebx")); &lea ("edx",&DWP("GFp_poly1305_emit-".&label("pic_point"),"ebx")); &picmeup("edi","GFp_ia32cap_P","ebx",&label("pic_point")); &mov ("ecx",&DWP(0,"edi")); &and ("ecx",1<<26|1<<24); &cmp ("ecx",1<<26|1<<24); # SSE2 and XMM? # The non-SSE2 code was removed. &lea ("eax",&DWP("_poly1305_blocks_sse2-".&label("pic_point"),"ebx")); &lea ("edx",&DWP("_poly1305_emit_sse2-".&label("pic_point"),"ebx")); # AVX2 code removed. # The non-SSE2 code was removed. &mov ("edi",&wparam(0)); # reload context &mov (&DWP(0,"ebp"),"eax"); # fill function table &mov (&DWP(4,"ebp"),"edx"); } &mov ("eax",&DWP(4*0,"esi")); # load input key &mov ("ebx",&DWP(4*1,"esi")); &mov ("ecx",&DWP(4*2,"esi")); &mov ("edx",&DWP(4*3,"esi")); &and ("eax",0x0fffffff); &and ("ebx",0x0ffffffc); &and ("ecx",0x0ffffffc); &and ("edx",0x0ffffffc); &mov (&DWP(4*6,"edi"),"eax"); &mov (&DWP(4*7,"edi"),"ebx"); &mov (&DWP(4*8,"edi"),"ecx"); &mov (&DWP(4*9,"edi"),"edx"); &mov ("eax",$sse2); &set_label("nokey"); &function_end("GFp_poly1305_init_asm"); ($h0,$h1,$h2,$h3,$h4, $d0,$d1,$d2,$d3, $r0,$r1,$r2,$r3, $s1,$s2,$s3)=map(4*$_,(0..15)); &function_begin("GFp_poly1305_blocks"); &mov ("edi",&wparam(0)); # ctx &mov ("esi",&wparam(1)); # inp &mov ("ecx",&wparam(2)); # len &set_label("enter_blocks"); &and ("ecx",-15); &jz (&label("nodata")); &stack_push(16); &mov ("eax",&DWP(4*6,"edi")); # r0 &mov ("ebx",&DWP(4*7,"edi")); # r1 &lea ("ebp",&DWP(0,"esi","ecx")); # end of input &mov ("ecx",&DWP(4*8,"edi")); # r2 &mov ("edx",&DWP(4*9,"edi")); # r3 &mov (&wparam(2),"ebp"); &mov ("ebp","esi"); &mov (&DWP($r0,"esp"),"eax"); # r0 &mov ("eax","ebx"); &shr ("eax",2); &mov (&DWP($r1,"esp"),"ebx"); # r1 &add ("eax","ebx"); # s1 &mov ("ebx","ecx"); &shr ("ebx",2); &mov (&DWP($r2,"esp"),"ecx"); # r2 &add ("ebx","ecx"); # s2 &mov ("ecx","edx"); &shr ("ecx",2); &mov (&DWP($r3,"esp"),"edx"); # r3 &add ("ecx","edx"); # s3 &mov (&DWP($s1,"esp"),"eax"); # s1 &mov (&DWP($s2,"esp"),"ebx"); # s2 &mov (&DWP($s3,"esp"),"ecx"); # s3 &mov ("eax",&DWP(4*0,"edi")); # load hash value &mov ("ebx",&DWP(4*1,"edi")); &mov ("ecx",&DWP(4*2,"edi")); &mov ("esi",&DWP(4*3,"edi")); &mov ("edi",&DWP(4*4,"edi")); &jmp (&label("loop")); &set_label("loop",32); &add ("eax",&DWP(4*0,"ebp")); # accumulate input &adc ("ebx",&DWP(4*1,"ebp")); &adc ("ecx",&DWP(4*2,"ebp")); &adc ("esi",&DWP(4*3,"ebp")); &lea ("ebp",&DWP(4*4,"ebp")); &adc ("edi",&wparam(3)); # padbit &mov (&DWP($h0,"esp"),"eax"); # put aside hash[+inp] &mov (&DWP($h3,"esp"),"esi"); &mul (&DWP($r0,"esp")); # h0*r0 &mov (&DWP($h4,"esp"),"edi"); &mov ("edi","eax"); &mov ("eax","ebx"); # h1 &mov ("esi","edx"); &mul (&DWP($s3,"esp")); # h1*s3 &add ("edi","eax"); &mov ("eax","ecx"); # h2 &adc ("esi","edx"); &mul (&DWP($s2,"esp")); # h2*s2 &add ("edi","eax"); &mov ("eax",&DWP($h3,"esp")); &adc ("esi","edx"); &mul (&DWP($s1,"esp")); # h3*s1 &add ("edi","eax"); &mov ("eax",&DWP($h0,"esp")); &adc ("esi","edx"); &mul (&DWP($r1,"esp")); # h0*r1 &mov (&DWP($d0,"esp"),"edi"); &xor ("edi","edi"); &add ("esi","eax"); &mov ("eax","ebx"); # h1 &adc ("edi","edx"); &mul (&DWP($r0,"esp")); # h1*r0 &add ("esi","eax"); &mov ("eax","ecx"); # h2 &adc ("edi","edx"); &mul (&DWP($s3,"esp")); # h2*s3 &add ("esi","eax"); &mov ("eax",&DWP($h3,"esp")); &adc ("edi","edx"); &mul (&DWP($s2,"esp")); # h3*s2 &add ("esi","eax"); &mov ("eax",&DWP($h4,"esp")); &adc ("edi","edx"); &imul ("eax",&DWP($s1,"esp")); # h4*s1 &add ("esi","eax"); &mov ("eax",&DWP($h0,"esp")); &adc ("edi",0); &mul (&DWP($r2,"esp")); # h0*r2 &mov (&DWP($d1,"esp"),"esi"); &xor ("esi","esi"); &add ("edi","eax"); &mov ("eax","ebx"); # h1 &adc ("esi","edx"); &mul (&DWP($r1,"esp")); # h1*r1 &add ("edi","eax"); &mov ("eax","ecx"); # h2 &adc ("esi","edx"); &mul (&DWP($r0,"esp")); # h2*r0 &add ("edi","eax"); &mov ("eax",&DWP($h3,"esp")); &adc ("esi","edx"); &mul (&DWP($s3,"esp")); # h3*s3 &add ("edi","eax"); &mov ("eax",&DWP($h4,"esp")); &adc ("esi","edx"); &imul ("eax",&DWP($s2,"esp")); # h4*s2 &add ("edi","eax"); &mov ("eax",&DWP($h0,"esp")); &adc ("esi",0); &mul (&DWP($r3,"esp")); # h0*r3 &mov (&DWP($d2,"esp"),"edi"); &xor ("edi","edi"); &add ("esi","eax"); &mov ("eax","ebx"); # h1 &adc ("edi","edx"); &mul (&DWP($r2,"esp")); # h1*r2 &add ("esi","eax"); &mov ("eax","ecx"); # h2 &adc ("edi","edx"); &mul (&DWP($r1,"esp")); # h2*r1 &add ("esi","eax"); &mov ("eax",&DWP($h3,"esp")); &adc ("edi","edx"); &mul (&DWP($r0,"esp")); # h3*r0 &add ("esi","eax"); &mov ("ecx",&DWP($h4,"esp")); &adc ("edi","edx"); &mov ("edx","ecx"); &imul ("ecx",&DWP($s3,"esp")); # h4*s3 &add ("esi","ecx"); &mov ("eax",&DWP($d0,"esp")); &adc ("edi",0); &imul ("edx",&DWP($r0,"esp")); # h4*r0 &add ("edx","edi"); &mov ("ebx",&DWP($d1,"esp")); &mov ("ecx",&DWP($d2,"esp")); &mov ("edi","edx"); # last reduction step &shr ("edx",2); &and ("edi",3); &lea ("edx",&DWP(0,"edx","edx",4)); # *5 &add ("eax","edx"); &adc ("ebx",0); &adc ("ecx",0); &adc ("esi",0); &adc ("edi",0); &cmp ("ebp",&wparam(2)); # done yet? &jne (&label("loop")); &mov ("edx",&wparam(0)); # ctx &stack_pop(16); &mov (&DWP(4*0,"edx"),"eax"); # store hash value &mov (&DWP(4*1,"edx"),"ebx"); &mov (&DWP(4*2,"edx"),"ecx"); &mov (&DWP(4*3,"edx"),"esi"); &mov (&DWP(4*4,"edx"),"edi"); &set_label("nodata"); &function_end("GFp_poly1305_blocks"); &function_begin("GFp_poly1305_emit"); &mov ("ebp",&wparam(0)); # context &set_label("enter_emit"); &mov ("edi",&wparam(1)); # output &mov ("eax",&DWP(4*0,"ebp")); # load hash value &mov ("ebx",&DWP(4*1,"ebp")); &mov ("ecx",&DWP(4*2,"ebp")); &mov ("edx",&DWP(4*3,"ebp")); &mov ("esi",&DWP(4*4,"ebp")); &add ("eax",5); # compare to modulus &adc ("ebx",0); &adc ("ecx",0); &adc ("edx",0); &adc ("esi",0); &shr ("esi",2); # did it carry/borrow? &neg ("esi"); # do we choose hash-modulus? &and ("eax","esi"); &and ("ebx","esi"); &and ("ecx","esi"); &and ("edx","esi"); &mov (&DWP(4*0,"edi"),"eax"); &mov (&DWP(4*1,"edi"),"ebx"); &mov (&DWP(4*2,"edi"),"ecx"); &mov (&DWP(4*3,"edi"),"edx"); ¬ ("esi"); # or original hash value? &mov ("eax",&DWP(4*0,"ebp")); &mov ("ebx",&DWP(4*1,"ebp")); &mov ("ecx",&DWP(4*2,"ebp")); &mov ("edx",&DWP(4*3,"ebp")); &mov ("ebp",&wparam(2)); &and ("eax","esi"); &and ("ebx","esi"); &and ("ecx","esi"); &and ("edx","esi"); &or ("eax",&DWP(4*0,"edi")); &or ("ebx",&DWP(4*1,"edi")); &or ("ecx",&DWP(4*2,"edi")); &or ("edx",&DWP(4*3,"edi")); &add ("eax",&DWP(4*0,"ebp")); # accumulate key &adc ("ebx",&DWP(4*1,"ebp")); &adc ("ecx",&DWP(4*2,"ebp")); &adc ("edx",&DWP(4*3,"ebp")); &mov (&DWP(4*0,"edi"),"eax"); &mov (&DWP(4*1,"edi"),"ebx"); &mov (&DWP(4*2,"edi"),"ecx"); &mov (&DWP(4*3,"edi"),"edx"); &function_end("GFp_poly1305_emit"); if ($sse2) { ######################################################################## # Layout of opaque area is following. # # unsigned __int32 h[5]; # current hash value base 2^26 # unsigned __int32 is_base2_26; # unsigned __int32 r[4]; # key value base 2^32 # unsigned __int32 pad[2]; # struct { unsigned __int32 r^4, r^3, r^2, r^1; } r[9]; # # where r^n are base 2^26 digits of degrees of multiplier key. There are # 5 digits, but last four are interleaved with multiples of 5, totalling # in 9 elements: r0, r1, 5*r1, r2, 5*r2, r3, 5*r3, r4, 5*r4. my ($D0,$D1,$D2,$D3,$D4,$T0,$T1,$T2)=map("xmm$_",(0..7)); my $MASK=$T2; # borrow and keep in mind &align (32); &function_begin_B("_poly1305_init_sse2"); &movdqu ($D4,&QWP(4*6,"edi")); # key base 2^32 &lea ("edi",&DWP(16*3,"edi")); # size optimization &mov ("ebp","esp"); &sub ("esp",16*(9+5)); &and ("esp",-16); #&pand ($D4,&QWP(96,"ebx")); # magic mask &movq ($MASK,&QWP(64,"ebx")); &movdqa ($D0,$D4); &movdqa ($D1,$D4); &movdqa ($D2,$D4); &pand ($D0,$MASK); # -> base 2^26 &psrlq ($D1,26); &psrldq ($D2,6); &pand ($D1,$MASK); &movdqa ($D3,$D2); &psrlq ($D2,4) &psrlq ($D3,30); &pand ($D2,$MASK); &pand ($D3,$MASK); &psrldq ($D4,13); &lea ("edx",&DWP(16*9,"esp")); # size optimization &mov ("ecx",2); &set_label("square"); &movdqa (&QWP(16*0,"esp"),$D0); &movdqa (&QWP(16*1,"esp"),$D1); &movdqa (&QWP(16*2,"esp"),$D2); &movdqa (&QWP(16*3,"esp"),$D3); &movdqa (&QWP(16*4,"esp"),$D4); &movdqa ($T1,$D1); &movdqa ($T0,$D2); &pslld ($T1,2); &pslld ($T0,2); &paddd ($T1,$D1); # *5 &paddd ($T0,$D2); # *5 &movdqa (&QWP(16*5,"esp"),$T1); &movdqa (&QWP(16*6,"esp"),$T0); &movdqa ($T1,$D3); &movdqa ($T0,$D4); &pslld ($T1,2); &pslld ($T0,2); &paddd ($T1,$D3); # *5 &paddd ($T0,$D4); # *5 &movdqa (&QWP(16*7,"esp"),$T1); &movdqa (&QWP(16*8,"esp"),$T0); &pshufd ($T1,$D0,0b01000100); &movdqa ($T0,$D1); &pshufd ($D1,$D1,0b01000100); &pshufd ($D2,$D2,0b01000100); &pshufd ($D3,$D3,0b01000100); &pshufd ($D4,$D4,0b01000100); &movdqa (&QWP(16*0,"edx"),$T1); &movdqa (&QWP(16*1,"edx"),$D1); &movdqa (&QWP(16*2,"edx"),$D2); &movdqa (&QWP(16*3,"edx"),$D3); &movdqa (&QWP(16*4,"edx"),$D4); ################################################################ # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 &pmuludq ($D4,$D0); # h4*r0 &pmuludq ($D3,$D0); # h3*r0 &pmuludq ($D2,$D0); # h2*r0 &pmuludq ($D1,$D0); # h1*r0 &pmuludq ($D0,$T1); # h0*r0 sub pmuladd { my $load = shift; my $base = shift; $base = "esp" if (!defined($base)); ################################################################ # As for choice to "rotate" $T0-$T2 in order to move paddq # past next multiplication. While it makes code harder to read # and doesn't have significant effect on most processors, it # makes a lot of difference on Atom, up to 30% improvement. &movdqa ($T1,$T0); &pmuludq ($T0,&QWP(16*3,$base)); # r1*h3 &movdqa ($T2,$T1); &pmuludq ($T1,&QWP(16*2,$base)); # r1*h2 &paddq ($D4,$T0); &movdqa ($T0,$T2); &pmuludq ($T2,&QWP(16*1,$base)); # r1*h1 &paddq ($D3,$T1); &$load ($T1,5); # s1 &pmuludq ($T0,&QWP(16*0,$base)); # r1*h0 &paddq ($D2,$T2); &pmuludq ($T1,&QWP(16*4,$base)); # s1*h4 &$load ($T2,2); # r2^n &paddq ($D1,$T0); &movdqa ($T0,$T2); &pmuludq ($T2,&QWP(16*2,$base)); # r2*h2 &paddq ($D0,$T1); &movdqa ($T1,$T0); &pmuludq ($T0,&QWP(16*1,$base)); # r2*h1 &paddq ($D4,$T2); &$load ($T2,6); # s2^n &pmuludq ($T1,&QWP(16*0,$base)); # r2*h0 &paddq ($D3,$T0); &movdqa ($T0,$T2); &pmuludq ($T2,&QWP(16*4,$base)); # s2*h4 &paddq ($D2,$T1); &pmuludq ($T0,&QWP(16*3,$base)); # s2*h3 &$load ($T1,3); # r3^n &paddq ($D1,$T2); &movdqa ($T2,$T1); &pmuludq ($T1,&QWP(16*1,$base)); # r3*h1 &paddq ($D0,$T0); &$load ($T0,7); # s3^n &pmuludq ($T2,&QWP(16*0,$base)); # r3*h0 &paddq ($D4,$T1); &movdqa ($T1,$T0); &pmuludq ($T0,&QWP(16*4,$base)); # s3*h4 &paddq ($D3,$T2); &movdqa ($T2,$T1); &pmuludq ($T1,&QWP(16*3,$base)); # s3*h3 &paddq ($D2,$T0); &pmuludq ($T2,&QWP(16*2,$base)); # s3*h2 &$load ($T0,4); # r4^n &paddq ($D1,$T1); &$load ($T1,8); # s4^n &pmuludq ($T0,&QWP(16*0,$base)); # r4*h0 &paddq ($D0,$T2); &movdqa ($T2,$T1); &pmuludq ($T1,&QWP(16*4,$base)); # s4*h4 &paddq ($D4,$T0); &movdqa ($T0,$T2); &pmuludq ($T2,&QWP(16*1,$base)); # s4*h1 &paddq ($D3,$T1); &movdqa ($T1,$T0); &pmuludq ($T0,&QWP(16*2,$base)); # s4*h2 &paddq ($D0,$T2); &pmuludq ($T1,&QWP(16*3,$base)); # s4*h3 &movdqa ($MASK,&QWP(64,"ebx")); &paddq ($D1,$T0); &paddq ($D2,$T1); } &pmuladd (sub { my ($reg,$i)=@_; &movdqa ($reg,&QWP(16*$i,"esp")); },"edx"); sub lazy_reduction { my $extra = shift; ################################################################ # lazy reduction as discussed in "NEON crypto" by D.J. Bernstein # and P. Schwabe # # [(*) see discussion in poly1305-armv4 module] &movdqa ($T0,$D3); &pand ($D3,$MASK); &psrlq ($T0,26); &$extra () if (defined($extra)); &paddq ($T0,$D4); # h3 -> h4 &movdqa ($T1,$D0); &pand ($D0,$MASK); &psrlq ($T1,26); &movdqa ($D4,$T0); &paddq ($T1,$D1); # h0 -> h1 &psrlq ($T0,26); &pand ($D4,$MASK); &movdqa ($D1,$T1); &psrlq ($T1,26); &paddd ($D0,$T0); # favour paddd when # possible, because # paddq is "broken" # on Atom &psllq ($T0,2); &paddq ($T1,$D2); # h1 -> h2 &paddq ($T0,$D0); # h4 -> h0 (*) &pand ($D1,$MASK); &movdqa ($D2,$T1); &psrlq ($T1,26); &pand ($D2,$MASK); &paddd ($T1,$D3); # h2 -> h3 &movdqa ($D0,$T0); &psrlq ($T0,26); &movdqa ($D3,$T1); &psrlq ($T1,26); &pand ($D0,$MASK); &paddd ($D1,$T0); # h0 -> h1 &pand ($D3,$MASK); &paddd ($D4,$T1); # h3 -> h4 } &lazy_reduction (); &dec ("ecx"); &jz (&label("square_break")); &punpcklqdq ($D0,&QWP(16*0,"esp")); # 0:r^1:0:r^2 &punpcklqdq ($D1,&QWP(16*1,"esp")); &punpcklqdq ($D2,&QWP(16*2,"esp")); &punpcklqdq ($D3,&QWP(16*3,"esp")); &punpcklqdq ($D4,&QWP(16*4,"esp")); &jmp (&label("square")); &set_label("square_break"); &psllq ($D0,32); # -> r^3:0:r^4:0 &psllq ($D1,32); &psllq ($D2,32); &psllq ($D3,32); &psllq ($D4,32); &por ($D0,&QWP(16*0,"esp")); # r^3:r^1:r^4:r^2 &por ($D1,&QWP(16*1,"esp")); &por ($D2,&QWP(16*2,"esp")); &por ($D3,&QWP(16*3,"esp")); &por ($D4,&QWP(16*4,"esp")); &pshufd ($D0,$D0,0b10001101); # -> r^1:r^2:r^3:r^4 &pshufd ($D1,$D1,0b10001101); &pshufd ($D2,$D2,0b10001101); &pshufd ($D3,$D3,0b10001101); &pshufd ($D4,$D4,0b10001101); &movdqu (&QWP(16*0,"edi"),$D0); # save the table &movdqu (&QWP(16*1,"edi"),$D1); &movdqu (&QWP(16*2,"edi"),$D2); &movdqu (&QWP(16*3,"edi"),$D3); &movdqu (&QWP(16*4,"edi"),$D4); &movdqa ($T1,$D1); &movdqa ($T0,$D2); &pslld ($T1,2); &pslld ($T0,2); &paddd ($T1,$D1); # *5 &paddd ($T0,$D2); # *5 &movdqu (&QWP(16*5,"edi"),$T1); &movdqu (&QWP(16*6,"edi"),$T0); &movdqa ($T1,$D3); &movdqa ($T0,$D4); &pslld ($T1,2); &pslld ($T0,2); &paddd ($T1,$D3); # *5 &paddd ($T0,$D4); # *5 &movdqu (&QWP(16*7,"edi"),$T1); &movdqu (&QWP(16*8,"edi"),$T0); &mov ("esp","ebp"); &lea ("edi",&DWP(-16*3,"edi")); # size de-optimization &ret (); &function_end_B("_poly1305_init_sse2"); &align (32); &function_begin("_poly1305_blocks_sse2"); &mov ("edi",&wparam(0)); # ctx &mov ("esi",&wparam(1)); # inp &mov ("ecx",&wparam(2)); # len &mov ("eax",&DWP(4*5,"edi")); # is_base2_26 &and ("ecx",-16); &jz (&label("nodata")); &cmp ("ecx",64); &jae (&label("enter_sse2")); &test ("eax","eax"); # is_base2_26? &jz (&label("enter_blocks")); &set_label("enter_sse2",16); &call (&label("pic_point")); &set_label("pic_point"); &blindpop("ebx"); &lea ("ebx",&DWP(&label("const_sse2")."-".&label("pic_point"),"ebx")); &test ("eax","eax"); # is_base2_26? &jnz (&label("base2_26")); &call ("_poly1305_init_sse2"); ################################################# base 2^32 -> base 2^26 &mov ("eax",&DWP(0,"edi")); &mov ("ecx",&DWP(3,"edi")); &mov ("edx",&DWP(6,"edi")); &mov ("esi",&DWP(9,"edi")); &mov ("ebp",&DWP(13,"edi")); &mov (&DWP(4*5,"edi"),1); # is_base2_26 &shr ("ecx",2); &and ("eax",0x3ffffff); &shr ("edx",4); &and ("ecx",0x3ffffff); &shr ("esi",6); &and ("edx",0x3ffffff); &movd ($D0,"eax"); &movd ($D1,"ecx"); &movd ($D2,"edx"); &movd ($D3,"esi"); &movd ($D4,"ebp"); &mov ("esi",&wparam(1)); # [reload] inp &mov ("ecx",&wparam(2)); # [reload] len &jmp (&label("base2_32")); &set_label("base2_26",16); &movd ($D0,&DWP(4*0,"edi")); # load hash value &movd ($D1,&DWP(4*1,"edi")); &movd ($D2,&DWP(4*2,"edi")); &movd ($D3,&DWP(4*3,"edi")); &movd ($D4,&DWP(4*4,"edi")); &movdqa ($MASK,&QWP(64,"ebx")); &set_label("base2_32"); &mov ("eax",&wparam(3)); # padbit &mov ("ebp","esp"); &sub ("esp",16*(5+5+5+9+9)); &and ("esp",-16); &lea ("edi",&DWP(16*3,"edi")); # size optimization &shl ("eax",24); # padbit &test ("ecx",31); &jz (&label("even")); ################################################################ # process single block, with SSE2, because it's still faster # even though half of result is discarded &movdqu ($T1,&QWP(0,"esi")); # input &lea ("esi",&DWP(16,"esi")); &movdqa ($T0,$T1); # -> base 2^26 ... &pand ($T1,$MASK); &paddd ($D0,$T1); # ... and accumuate &movdqa ($T1,$T0); &psrlq ($T0,26); &psrldq ($T1,6); &pand ($T0,$MASK); &paddd ($D1,$T0); &movdqa ($T0,$T1); &psrlq ($T1,4); &pand ($T1,$MASK); &paddd ($D2,$T1); &movdqa ($T1,$T0); &psrlq ($T0,30); &pand ($T0,$MASK); &psrldq ($T1,7); &paddd ($D3,$T0); &movd ($T0,"eax"); # padbit &paddd ($D4,$T1); &movd ($T1,&DWP(16*0+12,"edi")); # r0 &paddd ($D4,$T0); &movdqa (&QWP(16*0,"esp"),$D0); &movdqa (&QWP(16*1,"esp"),$D1); &movdqa (&QWP(16*2,"esp"),$D2); &movdqa (&QWP(16*3,"esp"),$D3); &movdqa (&QWP(16*4,"esp"),$D4); ################################################################ # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 &pmuludq ($D0,$T1); # h4*r0 &pmuludq ($D1,$T1); # h3*r0 &pmuludq ($D2,$T1); # h2*r0 &movd ($T0,&DWP(16*1+12,"edi")); # r1 &pmuludq ($D3,$T1); # h1*r0 &pmuludq ($D4,$T1); # h0*r0 &pmuladd (sub { my ($reg,$i)=@_; &movd ($reg,&DWP(16*$i+12,"edi")); }); &lazy_reduction (); &sub ("ecx",16); &jz (&label("done")); &set_label("even"); &lea ("edx",&DWP(16*(5+5+5+9),"esp"));# size optimization &lea ("eax",&DWP(-16*2,"esi")); &sub ("ecx",64); ################################################################ # expand and copy pre-calculated table to stack &movdqu ($T0,&QWP(16*0,"edi")); # r^1:r^2:r^3:r^4 &pshufd ($T1,$T0,0b01000100); # duplicate r^3:r^4 &cmovb ("esi","eax"); &pshufd ($T0,$T0,0b11101110); # duplicate r^1:r^2 &movdqa (&QWP(16*0,"edx"),$T1); &lea ("eax",&DWP(16*10,"esp")); &movdqu ($T1,&QWP(16*1,"edi")); &movdqa (&QWP(16*(0-9),"edx"),$T0); &pshufd ($T0,$T1,0b01000100); &pshufd ($T1,$T1,0b11101110); &movdqa (&QWP(16*1,"edx"),$T0); &movdqu ($T0,&QWP(16*2,"edi")); &movdqa (&QWP(16*(1-9),"edx"),$T1); &pshufd ($T1,$T0,0b01000100); &pshufd ($T0,$T0,0b11101110); &movdqa (&QWP(16*2,"edx"),$T1); &movdqu ($T1,&QWP(16*3,"edi")); &movdqa (&QWP(16*(2-9),"edx"),$T0); &pshufd ($T0,$T1,0b01000100); &pshufd ($T1,$T1,0b11101110); &movdqa (&QWP(16*3,"edx"),$T0); &movdqu ($T0,&QWP(16*4,"edi")); &movdqa (&QWP(16*(3-9),"edx"),$T1); &pshufd ($T1,$T0,0b01000100); &pshufd ($T0,$T0,0b11101110); &movdqa (&QWP(16*4,"edx"),$T1); &movdqu ($T1,&QWP(16*5,"edi")); &movdqa (&QWP(16*(4-9),"edx"),$T0); &pshufd ($T0,$T1,0b01000100); &pshufd ($T1,$T1,0b11101110); &movdqa (&QWP(16*5,"edx"),$T0); &movdqu ($T0,&QWP(16*6,"edi")); &movdqa (&QWP(16*(5-9),"edx"),$T1); &pshufd ($T1,$T0,0b01000100); &pshufd ($T0,$T0,0b11101110); &movdqa (&QWP(16*6,"edx"),$T1); &movdqu ($T1,&QWP(16*7,"edi")); &movdqa (&QWP(16*(6-9),"edx"),$T0); &pshufd ($T0,$T1,0b01000100); &pshufd ($T1,$T1,0b11101110); &movdqa (&QWP(16*7,"edx"),$T0); &movdqu ($T0,&QWP(16*8,"edi")); &movdqa (&QWP(16*(7-9),"edx"),$T1); &pshufd ($T1,$T0,0b01000100); &pshufd ($T0,$T0,0b11101110); &movdqa (&QWP(16*8,"edx"),$T1); &movdqa (&QWP(16*(8-9),"edx"),$T0); sub load_input { my ($inpbase,$offbase)=@_; &movdqu ($T0,&QWP($inpbase+0,"esi")); # load input &movdqu ($T1,&QWP($inpbase+16,"esi")); &lea ("esi",&DWP(16*2,"esi")); &movdqa (&QWP($offbase+16*2,"esp"),$D2); &movdqa (&QWP($offbase+16*3,"esp"),$D3); &movdqa (&QWP($offbase+16*4,"esp"),$D4); &movdqa ($D2,$T0); # splat input &movdqa ($D3,$T1); &psrldq ($D2,6); &psrldq ($D3,6); &movdqa ($D4,$T0); &punpcklqdq ($D2,$D3); # 2:3 &punpckhqdq ($D4,$T1); # 4 &punpcklqdq ($T0,$T1); # 0:1 &movdqa ($D3,$D2); &psrlq ($D2,4); &psrlq ($D3,30); &movdqa ($T1,$T0); &psrlq ($D4,40); # 4 &psrlq ($T1,26); &pand ($T0,$MASK); # 0 &pand ($T1,$MASK); # 1 &pand ($D2,$MASK); # 2 &pand ($D3,$MASK); # 3 &por ($D4,&QWP(0,"ebx")); # padbit, yes, always &movdqa (&QWP($offbase+16*0,"esp"),$D0) if ($offbase); &movdqa (&QWP($offbase+16*1,"esp"),$D1) if ($offbase); } &load_input (16*2,16*5); &jbe (&label("skip_loop")); &jmp (&label("loop")); &set_label("loop",32); ################################################################ # ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2 # ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^3+inp[7]*r # \___________________/ # ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2+inp[8])*r^2 # ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^4+inp[7]*r^2+inp[9])*r # \___________________/ \____________________/ ################################################################ &movdqa ($T2,&QWP(16*(0-9),"edx")); # r0^2 &movdqa (&QWP(16*1,"eax"),$T1); &movdqa (&QWP(16*2,"eax"),$D2); &movdqa (&QWP(16*3,"eax"),$D3); &movdqa (&QWP(16*4,"eax"),$D4); ################################################################ # d4 = h4*r0 + h0*r4 + h1*r3 + h2*r2 + h3*r1 # d3 = h3*r0 + h0*r3 + h1*r2 + h2*r1 + h4*5*r4 # d2 = h2*r0 + h0*r2 + h1*r1 + h3*5*r4 + h4*5*r3 # d1 = h1*r0 + h0*r1 + h2*5*r4 + h3*5*r3 + h4*5*r2 # d0 = h0*r0 + h1*5*r4 + h2*5*r3 + h3*5*r2 + h4*5*r1 &movdqa ($D1,$T0); &pmuludq ($T0,$T2); # h0*r0 &movdqa ($D0,$T1); &pmuludq ($T1,$T2); # h1*r0 &pmuludq ($D2,$T2); # h2*r0 &pmuludq ($D3,$T2); # h3*r0 &pmuludq ($D4,$T2); # h4*r0 sub pmuladd_alt { my $addr = shift; &pmuludq ($D0,&$addr(8)); # h1*s4 &movdqa ($T2,$D1); &pmuludq ($D1,&$addr(1)); # h0*r1 &paddq ($D0,$T0); &movdqa ($T0,$T2); &pmuludq ($T2,&$addr(2)); # h0*r2 &paddq ($D1,$T1); &movdqa ($T1,$T0); &pmuludq ($T0,&$addr(3)); # h0*r3 &paddq ($D2,$T2); &movdqa ($T2,&QWP(16*1,"eax")); # pull h1 &pmuludq ($T1,&$addr(4)); # h0*r4 &paddq ($D3,$T0); &movdqa ($T0,$T2); &pmuludq ($T2,&$addr(1)); # h1*r1 &paddq ($D4,$T1); &movdqa ($T1,$T0); &pmuludq ($T0,&$addr(2)); # h1*r2 &paddq ($D2,$T2); &movdqa ($T2,&QWP(16*2,"eax")); # pull h2 &pmuludq ($T1,&$addr(3)); # h1*r3 &paddq ($D3,$T0); &movdqa ($T0,$T2); &pmuludq ($T2,&$addr(7)); # h2*s3 &paddq ($D4,$T1); &movdqa ($T1,$T0); &pmuludq ($T0,&$addr(8)); # h2*s4 &paddq ($D0,$T2); &movdqa ($T2,$T1); &pmuludq ($T1,&$addr(1)); # h2*r1 &paddq ($D1,$T0); &movdqa ($T0,&QWP(16*3,"eax")); # pull h3 &pmuludq ($T2,&$addr(2)); # h2*r2 &paddq ($D3,$T1); &movdqa ($T1,$T0); &pmuludq ($T0,&$addr(6)); # h3*s2 &paddq ($D4,$T2); &movdqa ($T2,$T1); &pmuludq ($T1,&$addr(7)); # h3*s3 &paddq ($D0,$T0); &movdqa ($T0,$T2); &pmuludq ($T2,&$addr(8)); # h3*s4 &paddq ($D1,$T1); &movdqa ($T1,&QWP(16*4,"eax")); # pull h4 &pmuludq ($T0,&$addr(1)); # h3*r1 &paddq ($D2,$T2); &movdqa ($T2,$T1); &pmuludq ($T1,&$addr(8)); # h4*s4 &paddq ($D4,$T0); &movdqa ($T0,$T2); &pmuludq ($T2,&$addr(5)); # h4*s1 &paddq ($D3,$T1); &movdqa ($T1,$T0); &pmuludq ($T0,&$addr(6)); # h4*s2 &paddq ($D0,$T2); &movdqa ($MASK,&QWP(64,"ebx")); &pmuludq ($T1,&$addr(7)); # h4*s3 &paddq ($D1,$T0); &paddq ($D2,$T1); } &pmuladd_alt (sub { my $i=shift; &QWP(16*($i-9),"edx"); }); &load_input (-16*2,0); &lea ("eax",&DWP(-16*2,"esi")); &sub ("ecx",64); &paddd ($T0,&QWP(16*(5+0),"esp")); # add hash value &paddd ($T1,&QWP(16*(5+1),"esp")); &paddd ($D2,&QWP(16*(5+2),"esp")); &paddd ($D3,&QWP(16*(5+3),"esp")); &paddd ($D4,&QWP(16*(5+4),"esp")); &cmovb ("esi","eax"); &lea ("eax",&DWP(16*10,"esp")); &movdqa ($T2,&QWP(16*0,"edx")); # r0^4 &movdqa (&QWP(16*1,"esp"),$D1); &movdqa (&QWP(16*1,"eax"),$T1); &movdqa (&QWP(16*2,"eax"),$D2); &movdqa (&QWP(16*3,"eax"),$D3); &movdqa (&QWP(16*4,"eax"),$D4); ################################################################ # d4 += h4*r0 + h0*r4 + h1*r3 + h2*r2 + h3*r1 # d3 += h3*r0 + h0*r3 + h1*r2 + h2*r1 + h4*5*r4 # d2 += h2*r0 + h0*r2 + h1*r1 + h3*5*r4 + h4*5*r3 # d1 += h1*r0 + h0*r1 + h2*5*r4 + h3*5*r3 + h4*5*r2 # d0 += h0*r0 + h1*5*r4 + h2*5*r3 + h3*5*r2 + h4*5*r1 &movdqa ($D1,$T0); &pmuludq ($T0,$T2); # h0*r0 &paddq ($T0,$D0); &movdqa ($D0,$T1); &pmuludq ($T1,$T2); # h1*r0 &pmuludq ($D2,$T2); # h2*r0 &pmuludq ($D3,$T2); # h3*r0 &pmuludq ($D4,$T2); # h4*r0 &paddq ($T1,&QWP(16*1,"esp")); &paddq ($D2,&QWP(16*2,"esp")); &paddq ($D3,&QWP(16*3,"esp")); &paddq ($D4,&QWP(16*4,"esp")); &pmuladd_alt (sub { my $i=shift; &QWP(16*$i,"edx"); }); &lazy_reduction (); &load_input (16*2,16*5); &ja (&label("loop")); &set_label("skip_loop"); ################################################################ # multiply (inp[0:1]+hash) or inp[2:3] by r^2:r^1 &pshufd ($T2,&QWP(16*(0-9),"edx"),0x10);# r0^n &add ("ecx",32); &jnz (&label("long_tail")); &paddd ($T0,$D0); # add hash value &paddd ($T1,$D1); &paddd ($D2,&QWP(16*7,"esp")); &paddd ($D3,&QWP(16*8,"esp")); &paddd ($D4,&QWP(16*9,"esp")); &set_label("long_tail"); &movdqa (&QWP(16*0,"eax"),$T0); &movdqa (&QWP(16*1,"eax"),$T1); &movdqa (&QWP(16*2,"eax"),$D2); &movdqa (&QWP(16*3,"eax"),$D3); &movdqa (&QWP(16*4,"eax"),$D4); ################################################################ # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 &pmuludq ($T0,$T2); # h0*r0 &pmuludq ($T1,$T2); # h1*r0 &pmuludq ($D2,$T2); # h2*r0 &movdqa ($D0,$T0); &pshufd ($T0,&QWP(16*(1-9),"edx"),0x10);# r1^n &pmuludq ($D3,$T2); # h3*r0 &movdqa ($D1,$T1); &pmuludq ($D4,$T2); # h4*r0 &pmuladd (sub { my ($reg,$i)=@_; &pshufd ($reg,&QWP(16*($i-9),"edx"),0x10); },"eax"); &jz (&label("short_tail")); &load_input (-16*2,0); &pshufd ($T2,&QWP(16*0,"edx"),0x10); # r0^n &paddd ($T0,&QWP(16*5,"esp")); # add hash value &paddd ($T1,&QWP(16*6,"esp")); &paddd ($D2,&QWP(16*7,"esp")); &paddd ($D3,&QWP(16*8,"esp")); &paddd ($D4,&QWP(16*9,"esp")); ################################################################ # multiply inp[0:1] by r^4:r^3 and accumulate &movdqa (&QWP(16*0,"esp"),$T0); &pmuludq ($T0,$T2); # h0*r0 &movdqa (&QWP(16*1,"esp"),$T1); &pmuludq ($T1,$T2); # h1*r0 &paddq ($D0,$T0); &movdqa ($T0,$D2); &pmuludq ($D2,$T2); # h2*r0 &paddq ($D1,$T1); &movdqa ($T1,$D3); &pmuludq ($D3,$T2); # h3*r0 &paddq ($D2,&QWP(16*2,"esp")); &movdqa (&QWP(16*2,"esp"),$T0); &pshufd ($T0,&QWP(16*1,"edx"),0x10); # r1^n &paddq ($D3,&QWP(16*3,"esp")); &movdqa (&QWP(16*3,"esp"),$T1); &movdqa ($T1,$D4); &pmuludq ($D4,$T2); # h4*r0 &paddq ($D4,&QWP(16*4,"esp")); &movdqa (&QWP(16*4,"esp"),$T1); &pmuladd (sub { my ($reg,$i)=@_; &pshufd ($reg,&QWP(16*$i,"edx"),0x10); }); &set_label("short_tail"); ################################################################ # horizontal addition &pshufd ($T1,$D4,0b01001110); &pshufd ($T0,$D3,0b01001110); &paddq ($D4,$T1); &paddq ($D3,$T0); &pshufd ($T1,$D0,0b01001110); &pshufd ($T0,$D1,0b01001110); &paddq ($D0,$T1); &paddq ($D1,$T0); &pshufd ($T1,$D2,0b01001110); #&paddq ($D2,$T1); &lazy_reduction (sub { &paddq ($D2,$T1) }); &set_label("done"); &movd (&DWP(-16*3+4*0,"edi"),$D0); # store hash value &movd (&DWP(-16*3+4*1,"edi"),$D1); &movd (&DWP(-16*3+4*2,"edi"),$D2); &movd (&DWP(-16*3+4*3,"edi"),$D3); &movd (&DWP(-16*3+4*4,"edi"),$D4); &mov ("esp","ebp"); &set_label("nodata"); &function_end("_poly1305_blocks_sse2"); &align (32); &function_begin("_poly1305_emit_sse2"); &mov ("ebp",&wparam(0)); # context &cmp (&DWP(4*5,"ebp"),0); # is_base2_26? &je (&label("enter_emit")); &mov ("eax",&DWP(4*0,"ebp")); # load hash value &mov ("edi",&DWP(4*1,"ebp")); &mov ("ecx",&DWP(4*2,"ebp")); &mov ("edx",&DWP(4*3,"ebp")); &mov ("esi",&DWP(4*4,"ebp")); &mov ("ebx","edi"); # base 2^26 -> base 2^32 &shl ("edi",26); &shr ("ebx",6); &add ("eax","edi"); &mov ("edi","ecx"); &adc ("ebx",0); &shl ("edi",20); &shr ("ecx",12); &add ("ebx","edi"); &mov ("edi","edx"); &adc ("ecx",0); &shl ("edi",14); &shr ("edx",18); &add ("ecx","edi"); &mov ("edi","esi"); &adc ("edx",0); &shl ("edi",8); &shr ("esi",24); &add ("edx","edi"); &adc ("esi",0); # can be partially reduced &mov ("edi","esi"); # final reduction &and ("esi",3); &shr ("edi",2); &lea ("ebp",&DWP(0,"edi","edi",4)); # *5 &mov ("edi",&wparam(1)); # output &add ("eax","ebp"); &mov ("ebp",&wparam(2)); # key &adc ("ebx",0); &adc ("ecx",0); &adc ("edx",0); &adc ("esi",0); &movd ($D0,"eax"); # offload original hash value &add ("eax",5); # compare to modulus &movd ($D1,"ebx"); &adc ("ebx",0); &movd ($D2,"ecx"); &adc ("ecx",0); &movd ($D3,"edx"); &adc ("edx",0); &adc ("esi",0); &shr ("esi",2); # did it carry/borrow? &neg ("esi"); # do we choose (hash-modulus) ... &and ("eax","esi"); &and ("ebx","esi"); &and ("ecx","esi"); &and ("edx","esi"); &mov (&DWP(4*0,"edi"),"eax"); &movd ("eax",$D0); &mov (&DWP(4*1,"edi"),"ebx"); &movd ("ebx",$D1); &mov (&DWP(4*2,"edi"),"ecx"); &movd ("ecx",$D2); &mov (&DWP(4*3,"edi"),"edx"); &movd ("edx",$D3); ¬ ("esi"); # ... or original hash value? &and ("eax","esi"); &and ("ebx","esi"); &or ("eax",&DWP(4*0,"edi")); &and ("ecx","esi"); &or ("ebx",&DWP(4*1,"edi")); &and ("edx","esi"); &or ("ecx",&DWP(4*2,"edi")); &or ("edx",&DWP(4*3,"edi")); &add ("eax",&DWP(4*0,"ebp")); # accumulate key &adc ("ebx",&DWP(4*1,"ebp")); &mov (&DWP(4*0,"edi"),"eax"); &adc ("ecx",&DWP(4*2,"ebp")); &mov (&DWP(4*1,"edi"),"ebx"); &adc ("edx",&DWP(4*3,"ebp")); &mov (&DWP(4*2,"edi"),"ecx"); &mov (&DWP(4*3,"edi"),"edx"); &function_end("_poly1305_emit_sse2"); # The AVX2 code was removed. &set_label("const_sse2",64); &data_word(1<<24,0, 1<<24,0, 1<<24,0, 1<<24,0); &data_word(0,0, 0,0, 0,0, 0,0); &data_word(0x03ffffff,0,0x03ffffff,0, 0x03ffffff,0, 0x03ffffff,0); &data_word(0x0fffffff,0x0ffffffc,0x0ffffffc,0x0ffffffc); } &asciz ("Poly1305 for x86, CRYPTOGAMS by "); &align (4); &asm_finish(); close STDOUT or die "error closing STDOUT";