// This file is generated from a similarly-named Perl script in the BoringSSL // source tree. Do not edit by hand. #if defined(__has_feature) #if __has_feature(memory_sanitizer) && !defined(OPENSSL_NO_ASM) #define OPENSSL_NO_ASM #endif #endif #if !defined(OPENSSL_NO_ASM) .section __TEXT,__const .align 7 // totally strategic alignment _vpaes_consts: Lk_mc_forward: // mc_forward .quad 0x0407060500030201, 0x0C0F0E0D080B0A09 .quad 0x080B0A0904070605, 0x000302010C0F0E0D .quad 0x0C0F0E0D080B0A09, 0x0407060500030201 .quad 0x000302010C0F0E0D, 0x080B0A0904070605 Lk_mc_backward: // mc_backward .quad 0x0605040702010003, 0x0E0D0C0F0A09080B .quad 0x020100030E0D0C0F, 0x0A09080B06050407 .quad 0x0E0D0C0F0A09080B, 0x0605040702010003 .quad 0x0A09080B06050407, 0x020100030E0D0C0F Lk_sr: // sr .quad 0x0706050403020100, 0x0F0E0D0C0B0A0908 .quad 0x030E09040F0A0500, 0x0B06010C07020D08 .quad 0x0F060D040B020900, 0x070E050C030A0108 .quad 0x0B0E0104070A0D00, 0x0306090C0F020508 // // "Hot" constants // Lk_inv: // inv, inva .quad 0x0E05060F0D080180, 0x040703090A0B0C02 .quad 0x01040A060F0B0780, 0x030D0E0C02050809 Lk_ipt: // input transform (lo, hi) .quad 0xC2B2E8985A2A7000, 0xCABAE09052227808 .quad 0x4C01307D317C4D00, 0xCD80B1FCB0FDCC81 Lk_sbo: // sbou, sbot .quad 0xD0D26D176FBDC700, 0x15AABF7AC502A878 .quad 0xCFE474A55FBB6A00, 0x8E1E90D1412B35FA Lk_sb1: // sb1u, sb1t .quad 0x3618D415FAE22300, 0x3BF7CCC10D2ED9EF .quad 0xB19BE18FCB503E00, 0xA5DF7A6E142AF544 Lk_sb2: // sb2u, sb2t .quad 0x69EB88400AE12900, 0xC2A163C8AB82234A .quad 0xE27A93C60B712400, 0x5EB7E955BC982FCD // // Key schedule constants // Lk_dksd: // decryption key schedule: invskew x*D .quad 0xFEB91A5DA3E44700, 0x0740E3A45A1DBEF9 .quad 0x41C277F4B5368300, 0x5FDC69EAAB289D1E Lk_dksb: // decryption key schedule: invskew x*B .quad 0x9A4FCA1F8550D500, 0x03D653861CC94C99 .quad 0x115BEDA7B6FC4A00, 0xD993256F7E3482C8 Lk_dkse: // decryption key schedule: invskew x*E + 0x63 .quad 0xD5031CCA1FC9D600, 0x53859A4C994F5086 .quad 0xA23196054FDC7BE8, 0xCD5EF96A20B31487 Lk_dks9: // decryption key schedule: invskew x*9 .quad 0xB6116FC87ED9A700, 0x4AED933482255BFC .quad 0x4576516227143300, 0x8BB89FACE9DAFDCE Lk_rcon: // rcon .quad 0x1F8391B9AF9DEEB6, 0x702A98084D7C7D81 Lk_opt: // output transform .quad 0xFF9F4929D6B66000, 0xF7974121DEBE6808 .quad 0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0 Lk_deskew: // deskew tables: inverts the sbox's "skew" .quad 0x07E4A34047A4E300, 0x1DFEB95A5DBEF91A .quad 0x5F36B5DC83EA6900, 0x2841C2ABF49D1E77 .byte 86,101,99,116,111,114,32,80,101,114,109,117,116,97,116,105,111,110,32,65,69,83,32,102,111,114,32,65,82,77,118,56,44,32,77,105,107,101,32,72,97,109,98,117,114,103,32,40,83,116,97,110,102,111,114,100,32,85,110,105,118,101,114,115,105,116,121,41,0 .align 2 .align 6 .text ## ## _aes_preheat ## ## Fills register %r10 -> .aes_consts (so you can -fPIC) ## and %xmm9-%xmm15 as specified below. ## .align 4 _vpaes_encrypt_preheat: adrp x10, Lk_inv@PAGE add x10, x10, Lk_inv@PAGEOFF movi v17.16b, #0x0f ld1 {v18.2d,v19.2d}, [x10],#32 // Lk_inv ld1 {v20.2d,v21.2d,v22.2d,v23.2d}, [x10],#64 // Lk_ipt, Lk_sbo ld1 {v24.2d,v25.2d,v26.2d,v27.2d}, [x10] // Lk_sb1, Lk_sb2 ret ## ## _aes_encrypt_core ## ## AES-encrypt %xmm0. ## ## Inputs: ## %xmm0 = input ## %xmm9-%xmm15 as in _vpaes_preheat ## (%rdx) = scheduled keys ## ## Output in %xmm0 ## Clobbers %xmm1-%xmm5, %r9, %r10, %r11, %rax ## Preserves %xmm6 - %xmm8 so you get some local vectors ## ## .align 4 _vpaes_encrypt_core: mov x9, x2 ldr w8, [x2,#240] // pull rounds adrp x11, Lk_mc_forward@PAGE+16 add x11, x11, Lk_mc_forward@PAGEOFF+16 // vmovdqa .Lk_ipt(%rip), %xmm2 # iptlo ld1 {v16.2d}, [x9], #16 // vmovdqu (%r9), %xmm5 # round0 key and v1.16b, v7.16b, v17.16b // vpand %xmm9, %xmm0, %xmm1 ushr v0.16b, v7.16b, #4 // vpsrlb $4, %xmm0, %xmm0 tbl v1.16b, {v20.16b}, v1.16b // vpshufb %xmm1, %xmm2, %xmm1 // vmovdqa .Lk_ipt+16(%rip), %xmm3 # ipthi tbl v2.16b, {v21.16b}, v0.16b // vpshufb %xmm0, %xmm3, %xmm2 eor v0.16b, v1.16b, v16.16b // vpxor %xmm5, %xmm1, %xmm0 eor v0.16b, v0.16b, v2.16b // vpxor %xmm2, %xmm0, %xmm0 b Lenc_entry .align 4 Lenc_loop: // middle of middle round add x10, x11, #0x40 tbl v4.16b, {v25.16b}, v2.16b // vpshufb %xmm2, %xmm13, %xmm4 # 4 = sb1u ld1 {v1.2d}, [x11], #16 // vmovdqa -0x40(%r11,%r10), %xmm1 # Lk_mc_forward[] tbl v0.16b, {v24.16b}, v3.16b // vpshufb %xmm3, %xmm12, %xmm0 # 0 = sb1t eor v4.16b, v4.16b, v16.16b // vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k tbl v5.16b, {v27.16b}, v2.16b // vpshufb %xmm2, %xmm15, %xmm5 # 4 = sb2u eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 0 = A tbl v2.16b, {v26.16b}, v3.16b // vpshufb %xmm3, %xmm14, %xmm2 # 2 = sb2t ld1 {v4.2d}, [x10] // vmovdqa (%r11,%r10), %xmm4 # Lk_mc_backward[] tbl v3.16b, {v0.16b}, v1.16b // vpshufb %xmm1, %xmm0, %xmm3 # 0 = B eor v2.16b, v2.16b, v5.16b // vpxor %xmm5, %xmm2, %xmm2 # 2 = 2A tbl v0.16b, {v0.16b}, v4.16b // vpshufb %xmm4, %xmm0, %xmm0 # 3 = D eor v3.16b, v3.16b, v2.16b // vpxor %xmm2, %xmm3, %xmm3 # 0 = 2A+B tbl v4.16b, {v3.16b}, v1.16b // vpshufb %xmm1, %xmm3, %xmm4 # 0 = 2B+C eor v0.16b, v0.16b, v3.16b // vpxor %xmm3, %xmm0, %xmm0 # 3 = 2A+B+D and x11, x11, #~(1<<6) // and $0x30, %r11 # ... mod 4 eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 0 = 2A+3B+C+D sub w8, w8, #1 // nr-- Lenc_entry: // top of round and v1.16b, v0.16b, v17.16b // vpand %xmm0, %xmm9, %xmm1 # 0 = k ushr v0.16b, v0.16b, #4 // vpsrlb $4, %xmm0, %xmm0 # 1 = i tbl v5.16b, {v19.16b}, v1.16b // vpshufb %xmm1, %xmm11, %xmm5 # 2 = a/k eor v1.16b, v1.16b, v0.16b // vpxor %xmm0, %xmm1, %xmm1 # 0 = j tbl v3.16b, {v18.16b}, v0.16b // vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i tbl v4.16b, {v18.16b}, v1.16b // vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j eor v3.16b, v3.16b, v5.16b // vpxor %xmm5, %xmm3, %xmm3 # 3 = iak = 1/i + a/k eor v4.16b, v4.16b, v5.16b // vpxor %xmm5, %xmm4, %xmm4 # 4 = jak = 1/j + a/k tbl v2.16b, {v18.16b}, v3.16b // vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak tbl v3.16b, {v18.16b}, v4.16b // vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak eor v2.16b, v2.16b, v1.16b // vpxor %xmm1, %xmm2, %xmm2 # 2 = io eor v3.16b, v3.16b, v0.16b // vpxor %xmm0, %xmm3, %xmm3 # 3 = jo ld1 {v16.2d}, [x9],#16 // vmovdqu (%r9), %xmm5 cbnz w8, Lenc_loop // middle of last round add x10, x11, #0x80 // vmovdqa -0x60(%r10), %xmm4 # 3 : sbou .Lk_sbo // vmovdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16 tbl v4.16b, {v22.16b}, v2.16b // vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou ld1 {v1.2d}, [x10] // vmovdqa 0x40(%r11,%r10), %xmm1 # Lk_sr[] tbl v0.16b, {v23.16b}, v3.16b // vpshufb %xmm3, %xmm0, %xmm0 # 0 = sb1t eor v4.16b, v4.16b, v16.16b // vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 0 = A tbl v0.16b, {v0.16b}, v1.16b // vpshufb %xmm1, %xmm0, %xmm0 ret .globl _GFp_vpaes_encrypt .private_extern _GFp_vpaes_encrypt .align 4 _GFp_vpaes_encrypt: stp x29,x30,[sp,#-16]! add x29,sp,#0 ld1 {v7.16b}, [x0] bl _vpaes_encrypt_preheat bl _vpaes_encrypt_core st1 {v0.16b}, [x1] ldp x29,x30,[sp],#16 ret .align 4 _vpaes_encrypt_2x: mov x9, x2 ldr w8, [x2,#240] // pull rounds adrp x11, Lk_mc_forward@PAGE+16 add x11, x11, Lk_mc_forward@PAGEOFF+16 // vmovdqa .Lk_ipt(%rip), %xmm2 # iptlo ld1 {v16.2d}, [x9], #16 // vmovdqu (%r9), %xmm5 # round0 key and v1.16b, v14.16b, v17.16b // vpand %xmm9, %xmm0, %xmm1 ushr v0.16b, v14.16b, #4 // vpsrlb $4, %xmm0, %xmm0 and v9.16b, v15.16b, v17.16b ushr v8.16b, v15.16b, #4 tbl v1.16b, {v20.16b}, v1.16b // vpshufb %xmm1, %xmm2, %xmm1 tbl v9.16b, {v20.16b}, v9.16b // vmovdqa .Lk_ipt+16(%rip), %xmm3 # ipthi tbl v2.16b, {v21.16b}, v0.16b // vpshufb %xmm0, %xmm3, %xmm2 tbl v10.16b, {v21.16b}, v8.16b eor v0.16b, v1.16b, v16.16b // vpxor %xmm5, %xmm1, %xmm0 eor v8.16b, v9.16b, v16.16b eor v0.16b, v0.16b, v2.16b // vpxor %xmm2, %xmm0, %xmm0 eor v8.16b, v8.16b, v10.16b b Lenc_2x_entry .align 4 Lenc_2x_loop: // middle of middle round add x10, x11, #0x40 tbl v4.16b, {v25.16b}, v2.16b // vpshufb %xmm2, %xmm13, %xmm4 # 4 = sb1u tbl v12.16b, {v25.16b}, v10.16b ld1 {v1.2d}, [x11], #16 // vmovdqa -0x40(%r11,%r10), %xmm1 # Lk_mc_forward[] tbl v0.16b, {v24.16b}, v3.16b // vpshufb %xmm3, %xmm12, %xmm0 # 0 = sb1t tbl v8.16b, {v24.16b}, v11.16b eor v4.16b, v4.16b, v16.16b // vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k eor v12.16b, v12.16b, v16.16b tbl v5.16b, {v27.16b}, v2.16b // vpshufb %xmm2, %xmm15, %xmm5 # 4 = sb2u tbl v13.16b, {v27.16b}, v10.16b eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 0 = A eor v8.16b, v8.16b, v12.16b tbl v2.16b, {v26.16b}, v3.16b // vpshufb %xmm3, %xmm14, %xmm2 # 2 = sb2t tbl v10.16b, {v26.16b}, v11.16b ld1 {v4.2d}, [x10] // vmovdqa (%r11,%r10), %xmm4 # Lk_mc_backward[] tbl v3.16b, {v0.16b}, v1.16b // vpshufb %xmm1, %xmm0, %xmm3 # 0 = B tbl v11.16b, {v8.16b}, v1.16b eor v2.16b, v2.16b, v5.16b // vpxor %xmm5, %xmm2, %xmm2 # 2 = 2A eor v10.16b, v10.16b, v13.16b tbl v0.16b, {v0.16b}, v4.16b // vpshufb %xmm4, %xmm0, %xmm0 # 3 = D tbl v8.16b, {v8.16b}, v4.16b eor v3.16b, v3.16b, v2.16b // vpxor %xmm2, %xmm3, %xmm3 # 0 = 2A+B eor v11.16b, v11.16b, v10.16b tbl v4.16b, {v3.16b}, v1.16b // vpshufb %xmm1, %xmm3, %xmm4 # 0 = 2B+C tbl v12.16b, {v11.16b},v1.16b eor v0.16b, v0.16b, v3.16b // vpxor %xmm3, %xmm0, %xmm0 # 3 = 2A+B+D eor v8.16b, v8.16b, v11.16b and x11, x11, #~(1<<6) // and $0x30, %r11 # ... mod 4 eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 0 = 2A+3B+C+D eor v8.16b, v8.16b, v12.16b sub w8, w8, #1 // nr-- Lenc_2x_entry: // top of round and v1.16b, v0.16b, v17.16b // vpand %xmm0, %xmm9, %xmm1 # 0 = k ushr v0.16b, v0.16b, #4 // vpsrlb $4, %xmm0, %xmm0 # 1 = i and v9.16b, v8.16b, v17.16b ushr v8.16b, v8.16b, #4 tbl v5.16b, {v19.16b},v1.16b // vpshufb %xmm1, %xmm11, %xmm5 # 2 = a/k tbl v13.16b, {v19.16b},v9.16b eor v1.16b, v1.16b, v0.16b // vpxor %xmm0, %xmm1, %xmm1 # 0 = j eor v9.16b, v9.16b, v8.16b tbl v3.16b, {v18.16b},v0.16b // vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i tbl v11.16b, {v18.16b},v8.16b tbl v4.16b, {v18.16b},v1.16b // vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j tbl v12.16b, {v18.16b},v9.16b eor v3.16b, v3.16b, v5.16b // vpxor %xmm5, %xmm3, %xmm3 # 3 = iak = 1/i + a/k eor v11.16b, v11.16b, v13.16b eor v4.16b, v4.16b, v5.16b // vpxor %xmm5, %xmm4, %xmm4 # 4 = jak = 1/j + a/k eor v12.16b, v12.16b, v13.16b tbl v2.16b, {v18.16b},v3.16b // vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak tbl v10.16b, {v18.16b},v11.16b tbl v3.16b, {v18.16b},v4.16b // vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak tbl v11.16b, {v18.16b},v12.16b eor v2.16b, v2.16b, v1.16b // vpxor %xmm1, %xmm2, %xmm2 # 2 = io eor v10.16b, v10.16b, v9.16b eor v3.16b, v3.16b, v0.16b // vpxor %xmm0, %xmm3, %xmm3 # 3 = jo eor v11.16b, v11.16b, v8.16b ld1 {v16.2d}, [x9],#16 // vmovdqu (%r9), %xmm5 cbnz w8, Lenc_2x_loop // middle of last round add x10, x11, #0x80 // vmovdqa -0x60(%r10), %xmm4 # 3 : sbou .Lk_sbo // vmovdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16 tbl v4.16b, {v22.16b}, v2.16b // vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou tbl v12.16b, {v22.16b}, v10.16b ld1 {v1.2d}, [x10] // vmovdqa 0x40(%r11,%r10), %xmm1 # Lk_sr[] tbl v0.16b, {v23.16b}, v3.16b // vpshufb %xmm3, %xmm0, %xmm0 # 0 = sb1t tbl v8.16b, {v23.16b}, v11.16b eor v4.16b, v4.16b, v16.16b // vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k eor v12.16b, v12.16b, v16.16b eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 0 = A eor v8.16b, v8.16b, v12.16b tbl v0.16b, {v0.16b},v1.16b // vpshufb %xmm1, %xmm0, %xmm0 tbl v1.16b, {v8.16b},v1.16b ret ######################################################## ## ## ## AES key schedule ## ## ## ######################################################## .align 4 _vpaes_key_preheat: adrp x10, Lk_inv@PAGE add x10, x10, Lk_inv@PAGEOFF movi v16.16b, #0x5b // Lk_s63 adrp x11, Lk_sb1@PAGE add x11, x11, Lk_sb1@PAGEOFF movi v17.16b, #0x0f // Lk_s0F ld1 {v18.2d,v19.2d,v20.2d,v21.2d}, [x10] // Lk_inv, Lk_ipt adrp x10, Lk_dksd@PAGE add x10, x10, Lk_dksd@PAGEOFF ld1 {v22.2d,v23.2d}, [x11] // Lk_sb1 adrp x11, Lk_mc_forward@PAGE add x11, x11, Lk_mc_forward@PAGEOFF ld1 {v24.2d,v25.2d,v26.2d,v27.2d}, [x10],#64 // Lk_dksd, Lk_dksb ld1 {v28.2d,v29.2d,v30.2d,v31.2d}, [x10],#64 // Lk_dkse, Lk_dks9 ld1 {v8.2d}, [x10] // Lk_rcon ld1 {v9.2d}, [x11] // Lk_mc_forward[0] ret .align 4 _vpaes_schedule_core: stp x29, x30, [sp,#-16]! add x29,sp,#0 bl _vpaes_key_preheat // load the tables ld1 {v0.16b}, [x0],#16 // vmovdqu (%rdi), %xmm0 # load key (unaligned) // input transform mov v3.16b, v0.16b // vmovdqa %xmm0, %xmm3 bl _vpaes_schedule_transform mov v7.16b, v0.16b // vmovdqa %xmm0, %xmm7 adrp x10, Lk_sr@PAGE // lea Lk_sr(%rip),%r10 add x10, x10, Lk_sr@PAGEOFF add x8, x8, x10 // encrypting, output zeroth round key after transform st1 {v0.2d}, [x2] // vmovdqu %xmm0, (%rdx) cmp w1, #192 // cmp $192, %esi b.hi Lschedule_256 b.eq Lschedule_192 // 128: fall though ## ## .schedule_128 ## ## 128-bit specific part of key schedule. ## ## This schedule is really simple, because all its parts ## are accomplished by the subroutines. ## Lschedule_128: mov x0, #10 // mov $10, %esi Loop_schedule_128: sub x0, x0, #1 // dec %esi bl _vpaes_schedule_round cbz x0, Lschedule_mangle_last bl _vpaes_schedule_mangle // write output b Loop_schedule_128 ## ## .aes_schedule_192 ## ## 192-bit specific part of key schedule. ## ## The main body of this schedule is the same as the 128-bit ## schedule, but with more smearing. The long, high side is ## stored in %xmm7 as before, and the short, low side is in ## the high bits of %xmm6. ## ## This schedule is somewhat nastier, however, because each ## round produces 192 bits of key material, or 1.5 round keys. ## Therefore, on each cycle we do 2 rounds and produce 3 round ## keys. ## .align 4 Lschedule_192: sub x0, x0, #8 ld1 {v0.16b}, [x0] // vmovdqu 8(%rdi),%xmm0 # load key part 2 (very unaligned) bl _vpaes_schedule_transform // input transform mov v6.16b, v0.16b // vmovdqa %xmm0, %xmm6 # save short part eor v4.16b, v4.16b, v4.16b // vpxor %xmm4, %xmm4, %xmm4 # clear 4 ins v6.d[0], v4.d[0] // vmovhlps %xmm4, %xmm6, %xmm6 # clobber low side with zeros mov x0, #4 // mov $4, %esi Loop_schedule_192: sub x0, x0, #1 // dec %esi bl _vpaes_schedule_round ext v0.16b, v6.16b, v0.16b, #8 // vpalignr $8,%xmm6,%xmm0,%xmm0 bl _vpaes_schedule_mangle // save key n bl _vpaes_schedule_192_smear bl _vpaes_schedule_mangle // save key n+1 bl _vpaes_schedule_round cbz x0, Lschedule_mangle_last bl _vpaes_schedule_mangle // save key n+2 bl _vpaes_schedule_192_smear b Loop_schedule_192 ## ## .aes_schedule_256 ## ## 256-bit specific part of key schedule. ## ## The structure here is very similar to the 128-bit ## schedule, but with an additional "low side" in ## %xmm6. The low side's rounds are the same as the ## high side's, except no rcon and no rotation. ## .align 4 Lschedule_256: ld1 {v0.16b}, [x0] // vmovdqu 16(%rdi),%xmm0 # load key part 2 (unaligned) bl _vpaes_schedule_transform // input transform mov x0, #7 // mov $7, %esi Loop_schedule_256: sub x0, x0, #1 // dec %esi bl _vpaes_schedule_mangle // output low result mov v6.16b, v0.16b // vmovdqa %xmm0, %xmm6 # save cur_lo in xmm6 // high round bl _vpaes_schedule_round cbz x0, Lschedule_mangle_last bl _vpaes_schedule_mangle // low round. swap xmm7 and xmm6 dup v0.4s, v0.s[3] // vpshufd $0xFF, %xmm0, %xmm0 movi v4.16b, #0 mov v5.16b, v7.16b // vmovdqa %xmm7, %xmm5 mov v7.16b, v6.16b // vmovdqa %xmm6, %xmm7 bl _vpaes_schedule_low_round mov v7.16b, v5.16b // vmovdqa %xmm5, %xmm7 b Loop_schedule_256 ## ## .aes_schedule_mangle_last ## ## Mangler for last round of key schedule ## Mangles %xmm0 ## when encrypting, outputs out(%xmm0) ^ 63 ## when decrypting, outputs unskew(%xmm0) ## ## Always called right before return... jumps to cleanup and exits ## .align 4 Lschedule_mangle_last: // schedule last round key from xmm0 adrp x11, Lk_deskew@PAGE // lea Lk_deskew(%rip),%r11 # prepare to deskew add x11, x11, Lk_deskew@PAGEOFF cbnz w3, Lschedule_mangle_last_dec // encrypting ld1 {v1.2d}, [x8] // vmovdqa (%r8,%r10),%xmm1 adrp x11, Lk_opt@PAGE // lea Lk_opt(%rip), %r11 # prepare to output transform add x11, x11, Lk_opt@PAGEOFF add x2, x2, #32 // add $32, %rdx tbl v0.16b, {v0.16b}, v1.16b // vpshufb %xmm1, %xmm0, %xmm0 # output permute Lschedule_mangle_last_dec: ld1 {v20.2d,v21.2d}, [x11] // reload constants sub x2, x2, #16 // add $-16, %rdx eor v0.16b, v0.16b, v16.16b // vpxor Lk_s63(%rip), %xmm0, %xmm0 bl _vpaes_schedule_transform // output transform st1 {v0.2d}, [x2] // vmovdqu %xmm0, (%rdx) # save last key // cleanup eor v0.16b, v0.16b, v0.16b // vpxor %xmm0, %xmm0, %xmm0 eor v1.16b, v1.16b, v1.16b // vpxor %xmm1, %xmm1, %xmm1 eor v2.16b, v2.16b, v2.16b // vpxor %xmm2, %xmm2, %xmm2 eor v3.16b, v3.16b, v3.16b // vpxor %xmm3, %xmm3, %xmm3 eor v4.16b, v4.16b, v4.16b // vpxor %xmm4, %xmm4, %xmm4 eor v5.16b, v5.16b, v5.16b // vpxor %xmm5, %xmm5, %xmm5 eor v6.16b, v6.16b, v6.16b // vpxor %xmm6, %xmm6, %xmm6 eor v7.16b, v7.16b, v7.16b // vpxor %xmm7, %xmm7, %xmm7 ldp x29, x30, [sp],#16 ret ## ## .aes_schedule_192_smear ## ## Smear the short, low side in the 192-bit key schedule. ## ## Inputs: ## %xmm7: high side, b a x y ## %xmm6: low side, d c 0 0 ## %xmm13: 0 ## ## Outputs: ## %xmm6: b+c+d b+c 0 0 ## %xmm0: b+c+d b+c b a ## .align 4 _vpaes_schedule_192_smear: movi v1.16b, #0 dup v0.4s, v7.s[3] ins v1.s[3], v6.s[2] // vpshufd $0x80, %xmm6, %xmm1 # d c 0 0 -> c 0 0 0 ins v0.s[0], v7.s[2] // vpshufd $0xFE, %xmm7, %xmm0 # b a _ _ -> b b b a eor v6.16b, v6.16b, v1.16b // vpxor %xmm1, %xmm6, %xmm6 # -> c+d c 0 0 eor v1.16b, v1.16b, v1.16b // vpxor %xmm1, %xmm1, %xmm1 eor v6.16b, v6.16b, v0.16b // vpxor %xmm0, %xmm6, %xmm6 # -> b+c+d b+c b a mov v0.16b, v6.16b // vmovdqa %xmm6, %xmm0 ins v6.d[0], v1.d[0] // vmovhlps %xmm1, %xmm6, %xmm6 # clobber low side with zeros ret ## ## .aes_schedule_round ## ## Runs one main round of the key schedule on %xmm0, %xmm7 ## ## Specifically, runs subbytes on the high dword of %xmm0 ## then rotates it by one byte and xors into the low dword of ## %xmm7. ## ## Adds rcon from low byte of %xmm8, then rotates %xmm8 for ## next rcon. ## ## Smears the dwords of %xmm7 by xoring the low into the ## second low, result into third, result into highest. ## ## Returns results in %xmm7 = %xmm0. ## Clobbers %xmm1-%xmm4, %r11. ## .align 4 _vpaes_schedule_round: // extract rcon from xmm8 movi v4.16b, #0 // vpxor %xmm4, %xmm4, %xmm4 ext v1.16b, v8.16b, v4.16b, #15 // vpalignr $15, %xmm8, %xmm4, %xmm1 ext v8.16b, v8.16b, v8.16b, #15 // vpalignr $15, %xmm8, %xmm8, %xmm8 eor v7.16b, v7.16b, v1.16b // vpxor %xmm1, %xmm7, %xmm7 // rotate dup v0.4s, v0.s[3] // vpshufd $0xFF, %xmm0, %xmm0 ext v0.16b, v0.16b, v0.16b, #1 // vpalignr $1, %xmm0, %xmm0, %xmm0 // fall through... // low round: same as high round, but no rotation and no rcon. _vpaes_schedule_low_round: // smear xmm7 ext v1.16b, v4.16b, v7.16b, #12 // vpslldq $4, %xmm7, %xmm1 eor v7.16b, v7.16b, v1.16b // vpxor %xmm1, %xmm7, %xmm7 ext v4.16b, v4.16b, v7.16b, #8 // vpslldq $8, %xmm7, %xmm4 // subbytes and v1.16b, v0.16b, v17.16b // vpand %xmm9, %xmm0, %xmm1 # 0 = k ushr v0.16b, v0.16b, #4 // vpsrlb $4, %xmm0, %xmm0 # 1 = i eor v7.16b, v7.16b, v4.16b // vpxor %xmm4, %xmm7, %xmm7 tbl v2.16b, {v19.16b}, v1.16b // vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k eor v1.16b, v1.16b, v0.16b // vpxor %xmm0, %xmm1, %xmm1 # 0 = j tbl v3.16b, {v18.16b}, v0.16b // vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i eor v3.16b, v3.16b, v2.16b // vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k tbl v4.16b, {v18.16b}, v1.16b // vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j eor v7.16b, v7.16b, v16.16b // vpxor Lk_s63(%rip), %xmm7, %xmm7 tbl v3.16b, {v18.16b}, v3.16b // vpshufb %xmm3, %xmm10, %xmm3 # 2 = 1/iak eor v4.16b, v4.16b, v2.16b // vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k tbl v2.16b, {v18.16b}, v4.16b // vpshufb %xmm4, %xmm10, %xmm2 # 3 = 1/jak eor v3.16b, v3.16b, v1.16b // vpxor %xmm1, %xmm3, %xmm3 # 2 = io eor v2.16b, v2.16b, v0.16b // vpxor %xmm0, %xmm2, %xmm2 # 3 = jo tbl v4.16b, {v23.16b}, v3.16b // vpshufb %xmm3, %xmm13, %xmm4 # 4 = sbou tbl v1.16b, {v22.16b}, v2.16b // vpshufb %xmm2, %xmm12, %xmm1 # 0 = sb1t eor v1.16b, v1.16b, v4.16b // vpxor %xmm4, %xmm1, %xmm1 # 0 = sbox output // add in smeared stuff eor v0.16b, v1.16b, v7.16b // vpxor %xmm7, %xmm1, %xmm0 eor v7.16b, v1.16b, v7.16b // vmovdqa %xmm0, %xmm7 ret ## ## .aes_schedule_transform ## ## Linear-transform %xmm0 according to tables at (%r11) ## ## Requires that %xmm9 = 0x0F0F... as in preheat ## Output in %xmm0 ## Clobbers %xmm1, %xmm2 ## .align 4 _vpaes_schedule_transform: and v1.16b, v0.16b, v17.16b // vpand %xmm9, %xmm0, %xmm1 ushr v0.16b, v0.16b, #4 // vpsrlb $4, %xmm0, %xmm0 // vmovdqa (%r11), %xmm2 # lo tbl v2.16b, {v20.16b}, v1.16b // vpshufb %xmm1, %xmm2, %xmm2 // vmovdqa 16(%r11), %xmm1 # hi tbl v0.16b, {v21.16b}, v0.16b // vpshufb %xmm0, %xmm1, %xmm0 eor v0.16b, v0.16b, v2.16b // vpxor %xmm2, %xmm0, %xmm0 ret ## ## .aes_schedule_mangle ## ## Mangle xmm0 from (basis-transformed) standard version ## to our version. ## ## On encrypt, ## xor with 0x63 ## multiply by circulant 0,1,1,1 ## apply shiftrows transform ## ## On decrypt, ## xor with 0x63 ## multiply by "inverse mixcolumns" circulant E,B,D,9 ## deskew ## apply shiftrows transform ## ## ## Writes out to (%rdx), and increments or decrements it ## Keeps track of round number mod 4 in %r8 ## Preserves xmm0 ## Clobbers xmm1-xmm5 ## .align 4 _vpaes_schedule_mangle: mov v4.16b, v0.16b // vmovdqa %xmm0, %xmm4 # save xmm0 for later // vmovdqa .Lk_mc_forward(%rip),%xmm5 // encrypting eor v4.16b, v0.16b, v16.16b // vpxor Lk_s63(%rip), %xmm0, %xmm4 add x2, x2, #16 // add $16, %rdx tbl v4.16b, {v4.16b}, v9.16b // vpshufb %xmm5, %xmm4, %xmm4 tbl v1.16b, {v4.16b}, v9.16b // vpshufb %xmm5, %xmm4, %xmm1 tbl v3.16b, {v1.16b}, v9.16b // vpshufb %xmm5, %xmm1, %xmm3 eor v4.16b, v4.16b, v1.16b // vpxor %xmm1, %xmm4, %xmm4 ld1 {v1.2d}, [x8] // vmovdqa (%r8,%r10), %xmm1 eor v3.16b, v3.16b, v4.16b // vpxor %xmm4, %xmm3, %xmm3 Lschedule_mangle_both: tbl v3.16b, {v3.16b}, v1.16b // vpshufb %xmm1, %xmm3, %xmm3 add x8, x8, #64-16 // add $-16, %r8 and x8, x8, #~(1<<6) // and $0x30, %r8 st1 {v3.2d}, [x2] // vmovdqu %xmm3, (%rdx) ret .globl _GFp_vpaes_set_encrypt_key .private_extern _GFp_vpaes_set_encrypt_key .align 4 _GFp_vpaes_set_encrypt_key: stp x29,x30,[sp,#-16]! add x29,sp,#0 stp d8,d9,[sp,#-16]! // ABI spec says so lsr w9, w1, #5 // shr $5,%eax add w9, w9, #5 // $5,%eax str w9, [x2,#240] // mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5; mov w3, #0 // mov $0,%ecx mov x8, #0x30 // mov $0x30,%r8d bl _vpaes_schedule_core eor x0, x0, x0 ldp d8,d9,[sp],#16 ldp x29,x30,[sp],#16 ret .globl _GFp_vpaes_ctr32_encrypt_blocks .private_extern _GFp_vpaes_ctr32_encrypt_blocks .align 4 _GFp_vpaes_ctr32_encrypt_blocks: stp x29,x30,[sp,#-16]! add x29,sp,#0 stp d8,d9,[sp,#-16]! // ABI spec says so stp d10,d11,[sp,#-16]! stp d12,d13,[sp,#-16]! stp d14,d15,[sp,#-16]! cbz x2, Lctr32_done // Note, unlike the other functions, x2 here is measured in blocks, // not bytes. mov x17, x2 mov x2, x3 // Load the IV and counter portion. ldr w6, [x4, #12] ld1 {v7.16b}, [x4] bl _vpaes_encrypt_preheat tst x17, #1 rev w6, w6 // The counter is big-endian. b.eq Lctr32_prep_loop // Handle one block so the remaining block count is even for // _vpaes_encrypt_2x. ld1 {v6.16b}, [x0], #16 // Load input ahead of time bl _vpaes_encrypt_core eor v0.16b, v0.16b, v6.16b // XOR input and result st1 {v0.16b}, [x1], #16 subs x17, x17, #1 // Update the counter. add w6, w6, #1 rev w7, w6 mov v7.s[3], w7 b.ls Lctr32_done Lctr32_prep_loop: // _vpaes_encrypt_core takes its input from v7, while _vpaes_encrypt_2x // uses v14 and v15. mov v15.16b, v7.16b mov v14.16b, v7.16b add w6, w6, #1 rev w7, w6 mov v15.s[3], w7 Lctr32_loop: ld1 {v6.16b,v7.16b}, [x0], #32 // Load input ahead of time bl _vpaes_encrypt_2x eor v0.16b, v0.16b, v6.16b // XOR input and result eor v1.16b, v1.16b, v7.16b // XOR input and result (#2) st1 {v0.16b,v1.16b}, [x1], #32 subs x17, x17, #2 // Update the counter. add w7, w6, #1 add w6, w6, #2 rev w7, w7 mov v14.s[3], w7 rev w7, w6 mov v15.s[3], w7 b.hi Lctr32_loop Lctr32_done: ldp d14,d15,[sp],#16 ldp d12,d13,[sp],#16 ldp d10,d11,[sp],#16 ldp d8,d9,[sp],#16 ldp x29,x30,[sp],#16 ret #endif // !OPENSSL_NO_ASM