#! /usr/bin/env perl # Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # October 2005 # # This is a "teaser" code, as it can be improved in several ways... # First of all non-SSE2 path should be implemented (yes, for now it # performs Montgomery multiplication/convolution only on SSE2-capable # CPUs such as P4, others fall down to original code). Then inner loop # can be unrolled and modulo-scheduled to improve ILP and possibly # moved to 128-bit XMM register bank (though it would require input # rearrangement and/or increase bus bandwidth utilization). Dedicated # squaring procedure should give further performance improvement... # Yet, for being draft, the code improves rsa512 *sign* benchmark by # 110%(!), rsa1024 one - by 70% and rsa4096 - by 20%:-) # December 2006 # # Modulo-scheduling SSE2 loops results in further 15-20% improvement. # Integer-only code [being equipped with dedicated squaring procedure] # gives ~40% on rsa512 sign benchmark... $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../../perlasm"); require "x86asm.pl"; $output = pop; open STDOUT,">$output"; &asm_init($ARGV[0]); $sse2=0; for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } &external_label("OPENSSL_ia32cap_P") if ($sse2); &function_begin("bn_mul_mont"); $i="edx"; $j="ecx"; $ap="esi"; $tp="esi"; # overlapping variables!!! $rp="edi"; $bp="edi"; # overlapping variables!!! $np="ebp"; $num="ebx"; $_num=&DWP(4*0,"esp"); # stack top layout $_rp=&DWP(4*1,"esp"); $_ap=&DWP(4*2,"esp"); $_bp=&DWP(4*3,"esp"); $_np=&DWP(4*4,"esp"); $_n0=&DWP(4*5,"esp"); $_n0q=&QWP(4*5,"esp"); $_sp=&DWP(4*6,"esp"); $_bpend=&DWP(4*7,"esp"); $frame=32; # size of above frame rounded up to 16n &xor ("eax","eax"); &mov ("edi",&wparam(5)); # int num &lea ("esi",&wparam(0)); # put aside pointer to argument block &lea ("edx",&wparam(1)); # load ap &add ("edi",2); # extra two words on top of tp &neg ("edi"); &lea ("ebp",&DWP(-$frame,"esp","edi",4)); # future alloca($frame+4*(num+2)) &neg ("edi"); # minimize cache contention by arranging 2K window between stack # pointer and ap argument [np is also position sensitive vector, # but it's assumed to be near ap, as it's allocated at ~same # time]. &mov ("eax","ebp"); &sub ("eax","edx"); &and ("eax",2047); &sub ("ebp","eax"); # this aligns sp and ap modulo 2048 &xor ("edx","ebp"); &and ("edx",2048); &xor ("edx",2048); &sub ("ebp","edx"); # this splits them apart modulo 4096 &and ("ebp",-64); # align to cache line # An OS-agnostic version of __chkstk. # # Some OSes (Windows) insist on stack being "wired" to # physical memory in strictly sequential manner, i.e. if stack # allocation spans two pages, then reference to farmost one can # be punishable by SEGV. But page walking can do good even on # other OSes, because it guarantees that villain thread hits # the guard page before it can make damage to innocent one... &mov ("eax","esp"); &sub ("eax","ebp"); &and ("eax",-4096); &mov ("edx","esp"); # saved stack pointer! &lea ("esp",&DWP(0,"ebp","eax")); &mov ("eax",&DWP(0,"esp")); &cmp ("esp","ebp"); &ja (&label("page_walk")); &jmp (&label("page_walk_done")); &set_label("page_walk",16); &lea ("esp",&DWP(-4096,"esp")); &mov ("eax",&DWP(0,"esp")); &cmp ("esp","ebp"); &ja (&label("page_walk")); &set_label("page_walk_done"); ################################# load argument block... &mov ("eax",&DWP(0*4,"esi"));# BN_ULONG *rp &mov ("ebx",&DWP(1*4,"esi"));# const BN_ULONG *ap &mov ("ecx",&DWP(2*4,"esi"));# const BN_ULONG *bp &mov ("ebp",&DWP(3*4,"esi"));# const BN_ULONG *np &mov ("esi",&DWP(4*4,"esi"));# const BN_ULONG *n0 #&mov ("edi",&DWP(5*4,"esi"));# int num &mov ("esi",&DWP(0,"esi")); # pull n0[0] &mov ($_rp,"eax"); # ... save a copy of argument block &mov ($_ap,"ebx"); &mov ($_bp,"ecx"); &mov ($_np,"ebp"); &mov ($_n0,"esi"); &lea ($num,&DWP(-3,"edi")); # num=num-1 to assist modulo-scheduling #&mov ($_num,$num); # redundant as $num is not reused &mov ($_sp,"edx"); # saved stack pointer! if($sse2) { $acc0="mm0"; # mmx register bank layout $acc1="mm1"; $car0="mm2"; $car1="mm3"; $mul0="mm4"; $mul1="mm5"; $temp="mm6"; $mask="mm7"; &picmeup("eax","OPENSSL_ia32cap_P"); &bt (&DWP(0,"eax"),26); # The non-SSE2 code was removed. &mov ("eax",-1); &movd ($mask,"eax"); # mask 32 lower bits &mov ($ap,$_ap); # load input pointers &mov ($bp,$_bp); &mov ($np,$_np); &xor ($i,$i); # i=0 &xor ($j,$j); # j=0 &movd ($mul0,&DWP(0,$bp)); # bp[0] &movd ($mul1,&DWP(0,$ap)); # ap[0] &movd ($car1,&DWP(0,$np)); # np[0] &pmuludq($mul1,$mul0); # ap[0]*bp[0] &movq ($car0,$mul1); &movq ($acc0,$mul1); # I wish movd worked for &pand ($acc0,$mask); # inter-register transfers &pmuludq($mul1,$_n0q); # *=n0 &pmuludq($car1,$mul1); # "t[0]"*np[0]*n0 &paddq ($car1,$acc0); &movd ($acc1,&DWP(4,$np)); # np[1] &movd ($acc0,&DWP(4,$ap)); # ap[1] &psrlq ($car0,32); &psrlq ($car1,32); &inc ($j); # j++ &set_label("1st",16); &pmuludq($acc0,$mul0); # ap[j]*bp[0] &pmuludq($acc1,$mul1); # np[j]*m1 &paddq ($car0,$acc0); # +=c0 &paddq ($car1,$acc1); # +=c1 &movq ($acc0,$car0); &pand ($acc0,$mask); &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1] &paddq ($car1,$acc0); # +=ap[j]*bp[0]; &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1] &psrlq ($car0,32); &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[j-1]= &psrlq ($car1,32); &lea ($j,&DWP(1,$j)); &cmp ($j,$num); &jl (&label("1st")); &pmuludq($acc0,$mul0); # ap[num-1]*bp[0] &pmuludq($acc1,$mul1); # np[num-1]*m1 &paddq ($car0,$acc0); # +=c0 &paddq ($car1,$acc1); # +=c1 &movq ($acc0,$car0); &pand ($acc0,$mask); &paddq ($car1,$acc0); # +=ap[num-1]*bp[0]; &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]= &psrlq ($car0,32); &psrlq ($car1,32); &paddq ($car1,$car0); &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1] &inc ($i); # i++ &set_label("outer"); &xor ($j,$j); # j=0 &movd ($mul0,&DWP(0,$bp,$i,4)); # bp[i] &movd ($mul1,&DWP(0,$ap)); # ap[0] &movd ($temp,&DWP($frame,"esp")); # tp[0] &movd ($car1,&DWP(0,$np)); # np[0] &pmuludq($mul1,$mul0); # ap[0]*bp[i] &paddq ($mul1,$temp); # +=tp[0] &movq ($acc0,$mul1); &movq ($car0,$mul1); &pand ($acc0,$mask); &pmuludq($mul1,$_n0q); # *=n0 &pmuludq($car1,$mul1); &paddq ($car1,$acc0); &movd ($temp,&DWP($frame+4,"esp")); # tp[1] &movd ($acc1,&DWP(4,$np)); # np[1] &movd ($acc0,&DWP(4,$ap)); # ap[1] &psrlq ($car0,32); &psrlq ($car1,32); &paddq ($car0,$temp); # +=tp[1] &inc ($j); # j++ &dec ($num); &set_label("inner"); &pmuludq($acc0,$mul0); # ap[j]*bp[i] &pmuludq($acc1,$mul1); # np[j]*m1 &paddq ($car0,$acc0); # +=c0 &paddq ($car1,$acc1); # +=c1 &movq ($acc0,$car0); &movd ($temp,&DWP($frame+4,"esp",$j,4));# tp[j+1] &pand ($acc0,$mask); &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1] &paddq ($car1,$acc0); # +=ap[j]*bp[i]+tp[j] &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1] &psrlq ($car0,32); &movd (&DWP($frame-4,"esp",$j,4),$car1);# tp[j-1]= &psrlq ($car1,32); &paddq ($car0,$temp); # +=tp[j+1] &dec ($num); &lea ($j,&DWP(1,$j)); # j++ &jnz (&label("inner")); &mov ($num,$j); &pmuludq($acc0,$mul0); # ap[num-1]*bp[i] &pmuludq($acc1,$mul1); # np[num-1]*m1 &paddq ($car0,$acc0); # +=c0 &paddq ($car1,$acc1); # +=c1 &movq ($acc0,$car0); &pand ($acc0,$mask); &paddq ($car1,$acc0); # +=ap[num-1]*bp[i]+tp[num-1] &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]= &psrlq ($car0,32); &psrlq ($car1,32); &movd ($temp,&DWP($frame+4,"esp",$num,4)); # += tp[num] &paddq ($car1,$car0); &paddq ($car1,$temp); &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1] &lea ($i,&DWP(1,$i)); # i++ &cmp ($i,$num); &jle (&label("outer")); &emms (); # done with mmx bank } # The non-SSE2 code was removed. &set_label("common_tail",16); &mov ($np,$_np); # load modulus pointer &mov ($rp,$_rp); # load result pointer &lea ($tp,&DWP($frame,"esp")); # [$ap and $bp are zapped] &mov ("eax",&DWP(0,$tp)); # tp[0] &mov ($j,$num); # j=num-1 &xor ($i,$i); # i=0 and clear CF! &set_label("sub",16); &sbb ("eax",&DWP(0,$np,$i,4)); &mov (&DWP(0,$rp,$i,4),"eax"); # rp[i]=tp[i]-np[i] &dec ($j); # doesn't affect CF! &mov ("eax",&DWP(4,$tp,$i,4)); # tp[i+1] &lea ($i,&DWP(1,$i)); # i++ &jge (&label("sub")); &sbb ("eax",0); # handle upmost overflow bit &mov ("edx",-1); &xor ("edx","eax"); &jmp (&label("copy")); &set_label("copy",16); # conditional copy &mov ($tp,&DWP($frame,"esp",$num,4)); &mov ($np,&DWP(0,$rp,$num,4)); &mov (&DWP($frame,"esp",$num,4),$j); # zap temporary vector &and ($tp,"eax"); &and ($np,"edx"); &or ($np,$tp); &mov (&DWP(0,$rp,$num,4),$np); &dec ($num); &jge (&label("copy")); &mov ("esp",$_sp); # pull saved stack pointer &mov ("eax",1); &function_end("bn_mul_mont"); &asciz("Montgomery Multiplication for x86, CRYPTOGAMS by "); &asm_finish(); close STDOUT or die "error closing STDOUT";