// Copyright 2024 RISC Zero, Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once /// \file /// Defines FpExt, a finite field F_p^4, based on Fp via the irreducible polynomial x^4 - 11. #include #include "fp.h" // Defines instead of constexpr to appease CUDAs limitations around constants. // undef'd at the end of this file. #define BETA Fp(11) #define NBETA Fp(Fp::P - 11) /// Instances of FpExt are element of a finite field F_p^4. They are represented as elements of /// F_p[X] / (X^4 - 11). Basically, this is a 'big' finite field (about 2^128 elements), which is /// used when the security of various operations depends on the size of the field. It has the field /// Fp as a subfield, which means operations by the two are compatible, which is important. The /// irreducible polynomial was chosen to be the simplest possible one, x^4 - B, where 11 is the /// smallest B which makes the polynomial irreducible. struct FpExt { /// The elements of FpExt, elems[0] + elems[1]*X + elems[2]*X^2 + elems[3]*x^4 Fp elems[4]; /// Default constructor makes the zero elements constexpr FpExt() {} /// Initialize from uint32_t explicit constexpr FpExt(uint32_t x) { elems[0] = x; elems[1] = 0; elems[2] = 0; elems[3] = 0; } /// Convert from Fp to FpExt. explicit constexpr FpExt(Fp x) { elems[0] = x; elems[1] = 0; elems[2] = 0; elems[3] = 0; } /// Explicitly construct an FpExt from parts constexpr FpExt(Fp a, Fp b, Fp c, Fp d) { elems[0] = a; elems[1] = b; elems[2] = c; elems[3] = d; } constexpr inline FpExt zeroize() { for (uint32_t i = 0; i < 4; i++) { elems[i].zeroize(); } return *this; } // Implement the addition/subtraction overloads constexpr FpExt operator+=(FpExt rhs) { for (uint32_t i = 0; i < 4; i++) { elems[i] += rhs.elems[i]; } return *this; } constexpr FpExt operator-=(FpExt rhs) { for (uint32_t i = 0; i < 4; i++) { elems[i] -= rhs.elems[i]; } return *this; } constexpr FpExt operator+(FpExt rhs) const { FpExt result = *this; result += rhs; return result; } constexpr FpExt operator-(FpExt rhs) const { FpExt result = *this; result -= rhs; return result; } constexpr FpExt operator-() const { return FpExt() - *this; } // Implement the simple multiplication case by the subfield Fp // Fp * FpExt is done as a free function due to C++'s operator overloading rules. constexpr FpExt operator*=(Fp rhs) { for (uint32_t i = 0; i < 4; i++) { elems[i] *= rhs; } return *this; } constexpr FpExt operator*(Fp rhs) const { FpExt result = *this; result *= rhs; return result; } // Now we get to the interesting case of multiplication. Basically, multiply out the polynomial // representations, and then reduce module x^4 - B, which means powers >= 4 get shifted back 4 and // multiplied by -beta. We could write this as a double loops with some if's and hope it gets // unrolled properly, but it's small enough to just hand write. constexpr FpExt operator*(FpExt rhs) const { // Rename the element arrays to something small for readability #define a elems #define b rhs.elems return FpExt(a[0] * b[0] + NBETA * (a[1] * b[3] + a[2] * b[2] + a[3] * b[1]), a[0] * b[1] + a[1] * b[0] + NBETA * (a[2] * b[3] + a[3] * b[2]), a[0] * b[2] + a[1] * b[1] + a[2] * b[0] + NBETA * (a[3] * b[3]), a[0] * b[3] + a[1] * b[2] + a[2] * b[1] + a[3] * b[0]); #undef a #undef b } constexpr FpExt operator*=(FpExt rhs) { *this = *this * rhs; return *this; } // Equality constexpr bool operator==(FpExt rhs) const { for (uint32_t i = 0; i < 4; i++) { if (elems[i] != rhs.elems[i]) { return false; } } return true; } constexpr bool operator!=(FpExt rhs) const { return !(*this == rhs); } constexpr Fp constPart() const { return elems[0]; } constexpr FpExt operator+=(FpExt rhs) device { for (uint32_t i = 0; i < 4; i++) { elems[i] += rhs.elems[i]; } return *this; } constexpr FpExt operator+(FpExt rhs) device const { return FpExt(*this) + rhs; } constexpr FpExt operator-(FpExt rhs) device const { return FpExt(*this) - rhs; } constexpr FpExt operator-() device const { return -FpExt(*this); } constexpr FpExt operator*(FpExt rhs) device const { return FpExt(*this) * rhs; } constexpr FpExt operator*(Fp rhs) device const { return FpExt(*this) * rhs; } constexpr bool operator==(FpExt rhs) device const { return FpExt(*this) == rhs; } constexpr bool operator!=(FpExt rhs) device const { return FpExt(*this) != rhs; } constexpr Fp constPart() device const { return FpExt(*this).constPart(); } }; /// Overload for case where LHS is Fp (RHS case is handled as a method) constexpr inline FpExt operator*(Fp a, FpExt b) { return b * a; } /// Raise an FpExt to a power constexpr inline FpExt pow(FpExt x, size_t n) { FpExt tot(1); while (n != 0) { if (n % 2 == 1) { tot *= x; } n = n / 2; x *= x; } return tot; } /// Compute the multiplicative inverse of an FpExt. constexpr inline FpExt inv(FpExt in) { #define a in.elems // Compute the multiplicative inverse by basically looking at FpExt as a composite field and using // the same basic methods used to invert complex numbers. We imagine that initially we have a // numerator of 1, and an denominator of a. i.e out = 1 / a; We set a' to be a with the first and // third components negated. We then multiply the numerator and the denominator by a', producing // out = a' / (a * a'). By construction (a * a') has 0's in it's first and third elements. We // call this number, 'b' and compute it as follows. Fp b0 = a[0] * a[0] + BETA * (a[1] * (a[3] + a[3]) - a[2] * a[2]); Fp b2 = a[0] * (a[2] + a[2]) - a[1] * a[1] + BETA * (a[3] * a[3]); // Now, we make b' by inverting b2. When we multiply both sizes by b', we get out = (a' * b') / // (b * b'). But by construction b * b' is in fact an element of Fp, call it c. Fp c = b0 * b0 + BETA * b2 * b2; // But we can now invert C directly, and multiply by a'*b', out = a'*b'*inv(c) Fp ic = inv(c); // Note: if c == 0 (really should only happen if in == 0), our 'safe' version of inverse results // in ic == 0, and thus out = 0, so we have the same 'safe' behavior for FpExt. Oh, and since we // want to multiply everything by ic, it's slightly faster to premultiply the two parts of b by ic // (2 multiplies instead of 4) b0 *= ic; b2 *= ic; return FpExt(a[0] * b0 + BETA * a[2] * b2, -a[1] * b0 + NBETA * a[3] * b2, -a[0] * b2 + a[2] * b0, a[1] * b2 - a[3] * b0); #undef a } #undef BETA #undef NBETA