// Copyright 2022 Risc0, Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "risc0/zkp/core/fp.h" // A internal implementation of SHA-256 (which is the only one we use). It's very basic, but I // would like to avoid dependencies on third party libraries, and in some places we need direct // access to the compression function, for example, when doing unpadded merkle tree rollups. // Additionally it's useful for the GPU acceleration. // // The core compression function is a modification (for style, GPU, and c++isms), based on the code // at: https://github.com/B-Con/crypto-algorithms/blob/master/sha256.c which is a public domain // implementation by Brad Conte (brad@bradconte.com) // // We avoid endian conversions by usually keeping the form of uint32_t values. We do // support hashing of byte arrays including endian conversion and padding, but we generally avoid it // when possible. namespace risc0 { // A digest (still in uint32_t parts for easy rolling up in merkle trees). struct ShaDigest { uint32_t words[8]; // The 'zero' digest, sort of the nullptr of digests. DEVSPEC static ShaDigest zero() { return {{0, 0, 0, 0, 0, 0, 0, 0}}; } DEVSPEC int cmp(ShaDigest rhs) const { for (size_t i = 0; i < 8; i++) { if (words[i] != rhs.words[i]) { return words[i] < rhs.words[i] ? -1 : 1; } } return 0; } DEVSPEC bool operator==(ShaDigest rhs) const { return cmp(rhs) == 0; } DEVSPEC bool operator!=(ShaDigest rhs) const { return cmp(rhs) != 0; } template void transfer(Archive& ar) { for (uint32_t& word : words) { ar.transfer(word); } } }; // Namespace to hide away some of the details from the user. namespace impl { // Generate the initialization for hash state. DEVSPEC inline ShaDigest initState() { return {{0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19}}; } // Internal compression function, presumes chunk of 16 elements) DEVSPEC inline void compress(DEVLOCAL ShaDigest& state, const DEVLOCAL uint32_t* chunk) { // NOLINT uint32_t roundK[64] = {0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2}; #define ROTLEFT(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) #define ROTRIGHT(a, b) (((a) >> (b)) | ((a) << (32 - (b)))) #define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z))) #define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) #define EP0(x) (ROTRIGHT(x, 2) ^ ROTRIGHT(x, 13) ^ ROTRIGHT(x, 22)) #define EP1(x) (ROTRIGHT(x, 6) ^ ROTRIGHT(x, 11) ^ ROTRIGHT(x, 25)) #define SIG0(x) (ROTRIGHT(x, 7) ^ ROTRIGHT(x, 18) ^ ((x) >> 3)) #define SIG1(x) (ROTRIGHT(x, 17) ^ ROTRIGHT(x, 19) ^ ((x) >> 10)) #define ROUND_FUNC \ uint32_t t1 = h + EP1(e) + CH(e, f, g) + roundK[i] + w[i]; \ uint32_t t2 = EP0(a) + MAJ(a, b, c); \ h = g; \ g = f; \ f = e; \ e = d + t1; \ d = c; \ c = b; \ b = a; \ a = t1 + t2; uint32_t w[64]; uint32_t a = state.words[0]; uint32_t b = state.words[1]; uint32_t c = state.words[2]; uint32_t d = state.words[3]; uint32_t e = state.words[4]; uint32_t f = state.words[5]; uint32_t g = state.words[6]; uint32_t h = state.words[7]; for (size_t i = 0; i < 16; i++) { w[i] = chunk[i]; ROUND_FUNC; } for (size_t i = 16; i < 64; i++) { w[i] = SIG1(w[i - 2]) + w[i - 7] + SIG0(w[i - 15]) + w[i - 16]; ROUND_FUNC; } state.words[0] += a; state.words[1] += b; state.words[2] += c; state.words[3] += d; state.words[4] += e; state.words[5] += f; state.words[6] += g; state.words[7] += h; #undef ROTLEFT #undef ROTRIGHT #undef CH #undef MAJ #undef EP0 #undef EP1 #undef SIG0 #undef SIG1 #undef ROUND_FUNC } DEVSPEC inline void endianEncode(DEVADDR uint32_t* out, const DEVADDR uint8_t* in) { for (size_t i = 0; i < 16; i++) { out[i] = (in[4 * i + 0] << 24) | (in[4 * i + 1] << 16) | (in[4 * i + 2] << 8) | in[4 * i + 3]; } } DEVSPEC inline uint32_t convertU32(uint32_t in) { uint8_t bytes[4]; memcpy(bytes, &in, sizeof(in)); return (bytes[0] << 24) | (bytes[1] << 16) | (bytes[2] << 8) | bytes[3]; } DEVSPEC inline uint32_t convertU32(Fp in) { return convertU32(in.asUInt32()); } // Main entry point for uint32_t sized objects template DEVSPEC inline ShaDigest shaHashInner(const DEVADDR T* data, size_t size, size_t stride, bool pad) { // Prepare the inital state uint32_t words[16]; uint32_t curWord = 0; ShaDigest state = initState(); // Push all of the values for (size_t i = 0; i < size; i++) { words[curWord++] = convertU32(data[i * stride]); if (curWord == 16) { compress(state, words); curWord = 0; } } if (pad) { // Add padding words[curWord++] = 0x80000000UL; } // Clear rest of the block for (size_t i = curWord; i < 16; i++) { words[i] = 0; } // If we can't fit the size in the remaining room, compress + clear if (pad) { if (curWord > 14) { compress(state, words); for (size_t i = 0; i < 16; i++) { words[i] = 0; } } // Now add size in bits uint64_t bitSize = size * uint64_t(32); words[14] = bitSize >> 32; words[15] = bitSize & 0xffffffff; } // Do final compression if (pad || curWord != 0) { compress(state, words); } return state; } } // namespace impl // Main entry points DEVSPEC inline ShaDigest shaHash(const DEVADDR uint32_t* data, size_t size, size_t stride = 1, bool pad = true) { return impl::shaHashInner(data, size, stride, pad); } DEVSPEC inline ShaDigest shaHash(const DEVADDR Fp* data, size_t size, size_t stride = 1, bool pad = true) { return impl::shaHashInner(data, size, stride, pad); } DEVSPEC inline ShaDigest shaHashPair(ShaDigest x, ShaDigest y) { // Copy both hash states into a single buffer uint32_t words[16]; for (size_t i = 0; i < 8; i++) { words[i] = impl::convertU32(x.words[i]); } for (size_t i = 0; i < 8; i++) { words[8 + i] = impl::convertU32(y.words[i]); } // Initialize state + compress ShaDigest state = impl::initState(); impl::compress(state, words); // Return the results return state; } } // namespace risc0