// Copyright 2022 Risc0, Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "risc0/core/log.h" #include "risc0/core/util.h" #include "risc0/zkvm/prove/step.h" #include #include namespace risc0 { Fp StepContext::get(const Fp* buf, size_t offset, size_t back) { // NOLINT if (back > curStep) { return Fp::invalid(); // throw std::runtime_error("Get of negative timestep"); } LOG(3, "get offset=" << offset << ", back=" << back << " -> " << buf[offset * numSteps + (curStep - back)]); return buf[offset * numSteps + (curStep - back)]; } void StepContext::set(Fp* buf, size_t offset, Fp val) { // NOLINT #ifdef CIRCUIT_DEBUG if (val == Fp::invalid()) { LOG(0, "Set of invalid value, offset = " << offset); throw std::runtime_error("Invalid set"); } if (buf[offset * numSteps + curStep] != Fp::invalid() && buf[offset * numSteps + curStep] != val) { LOG(0, "Resetting offset " << offset << " from " << buf[offset * numSteps + curStep] << " to " << val); throw std::runtime_error("Overwriting value"); } #endif LOG(3, "set offset=" << offset << " <- " << val); buf[offset * numSteps + curStep] = val; } Fp StepContext::getDigits(const Fp* buf, size_t bits, size_t offset, size_t back, size_t size) { LOG(3, "getDigits, bits=" << bits << ", offset=" << offset << ", back=" << back << ", size=" << size); uint64_t tot = 0; uint64_t mul = 1; for (size_t i = 0; i < size; i++) { tot += get(buf, offset + i, back).asUInt32() * mul; mul <<= bits; } Fp ret = tot % Fp::P; LOG(3, " ret=" << ret); return ret; } Fp StepContext::setDigits(Fp* buf, size_t bits, size_t offset, size_t size, Fp val) { LOG(3, "setDigits, bits=" << bits << ", offset=" << offset << ", size=" << size << ", val=" << val); uint32_t cur = val.asUInt32(); uint32_t mask = (1 << bits) - 1; for (size_t i = 0; i < size; i++) { set(buf, offset + i, cur & mask); cur >>= bits; } return cur; } Fp StepContext::getMux(const Fp* buf, size_t offset, size_t back, size_t size) { LOG(3, "getMux, offset=" << offset << ", back=" << back << ", size=" << size); uint64_t tot = 0; for (uint64_t i = 0; i < size; i++) { tot += get(buf, offset + i, back).asUInt32() * i; } return Fp(tot % Fp::P); } void StepContext::setMux(Fp* buf, size_t offset, size_t size, Fp val) { LOG(3, "setMux, offset=" << offset << ", size=" << size << ", val=" << val); for (uint32_t i = 0; i < size; i++) { if (val.asUInt32() == i) { set(buf, offset + i, 1); } else { set(buf, offset + i, 0); } } } void StepContext::memWrite(Fp cycle, Fp addr, Fp low, Fp high) { uint32_t data = low.asUInt32() | (high.asUInt32() << 16); bool doWrite = addr.asUInt32() < (1 << (kMemBits - 1)); MemoryEvent evt = {addr.asUInt32(), cycle.asUInt32(), doWrite, data}; mem.history.emplace(evt); mem.data[addr.asUInt32()] = data; io->onWrite(mem, cycle.asUInt32(), addr.asUInt32() * 4, data); } std::array StepContext::memRead(Fp cycle, Fp addr) { if (mem.data.find(addr.asUInt32()) == mem.data.end()) { mem.data[addr.asUInt32()] = io->onRead(mem, addr.asUInt32() * 4); } uint32_t data = mem.data[addr.asUInt32()]; MemoryEvent evt = {addr.asUInt32(), cycle.asUInt32(), false, data}; mem.history.emplace(evt); return {data & 0xffff, data >> 16}; } std::array StepContext::memCheck() { if (mem.history.empty()) { throw std::runtime_error("memCheck on empty history"); } MemoryEvent evt = *mem.history.begin(); mem.history.erase(mem.history.begin()); return {evt.cycle, evt.addr, evt.isWrite, evt.data & 0xffff, evt.data >> 16}; } std::array StepContext::divide(Fp numerLow, Fp numerHigh, Fp denomLow, Fp denomHigh) { uint32_t numer = numerLow.asUInt32() | (numerHigh.asUInt32() << 16); uint32_t denom = denomLow.asUInt32() | (denomHigh.asUInt32() << 16); uint32_t quot; uint32_t rem; if (denom == 0) { quot = 0xffffffff; rem = numer; } else { quot = numer / denom; rem = numer % denom; } return {quot & 0xffff, quot >> 16, rem & 0xffff, rem >> 16}; } void StepContext::requireDigits(Fp* buf, size_t bits, size_t offset, size_t size) { for (size_t i = 0; i < size; i++) { #ifdef CIRCUIT_DEBUG if (get(buf, offset + i, 0) == Fp::invalid()) { set(buf, offset + i, Fp(0)); } #endif if (get(buf, offset + i, 0).asUInt32() >= (1U << bits)) { throw std::runtime_error("Invalid requireDigits\n"); } } } void StepContext::requireMux(Fp* buf, size_t offset, size_t size, const char* msg) { size_t tot = 0; for (size_t i = 0; i < size; i++) { #ifdef CIRCUIT_DEBUG if (get(buf, offset + i, 0) == Fp::invalid()) { set(buf, offset + i, Fp(0)); } #endif uint32_t val = get(buf, offset + i, 0).asUInt32(); tot += val; if (val >= 2) { throw std::runtime_error(std::string("Invalid requireMux: " + std::string(msg))); } } if (tot != 1) { throw std::runtime_error(std::string("Invalid requireMux: ") + std::string(msg)); } } void StepContext::requireZero(Fp val, const char* msg) { if (val != 0) { throw std::runtime_error(std::string("Invalid requireZero: ") + std::string(msg)); } } static constexpr uint32_t kInit[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19}; static constexpr uint32_t kRound[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2}; void setupCode(Fp* code, size_t numSteps, uint32_t startAddr, const std::map& image) { size_t kCyclePos = 0; size_t kTypePos = kCyclePos + 1; size_t kShaPos = kTypePos + CodeCycleType::NUM_TYPES; size_t kP1Pos = kShaPos + ShaCycleType::NUM_TYPES; size_t kP2Pos = kP1Pos + 1; size_t kDataPos = kP2Pos + 1; size_t kData2Pos = kDataPos + 2; if (image.size() + 3 /* INIT/RESET/FINI*/ + kZkCycles > numSteps) { throw std::runtime_error("Unable to generate code"); } for (uint32_t i = 0; i < numSteps; i++) { code[i] = i; } code[(kTypePos + CodeCycleType::INIT) * numSteps] = 1; uint32_t cycle = 1; for (const auto& kvp : image) { code[(kTypePos + CodeCycleType::MEM_WRITE) * numSteps + cycle] = 1; code[kP1Pos * numSteps + cycle] = kvp.first / 4; code[kP2Pos * numSteps + cycle] = (kvp.first / 4) >= (1 << (kMemBits - 1)); code[(kDataPos + 0) * numSteps + cycle] = kvp.second & 0xffff; code[(kDataPos + 1) * numSteps + cycle] = kvp.second >> 16; cycle++; } code[(kTypePos + CodeCycleType::RESET) * numSteps + cycle] = 1; code[kP1Pos * numSteps + cycle] = startAddr; cycle++; uint32_t base_cycle = cycle; for (; cycle + 1 + kZkCycles < numSteps; cycle++) { size_t inst_phase = (cycle - base_cycle) % 3; size_t sha_phase = (cycle - base_cycle) % 72; if (inst_phase == 2) { code[(kTypePos + CodeCycleType::FINAL) * numSteps + cycle] = 1; } else { code[(kTypePos + CodeCycleType::NORMAL) * numSteps + cycle] = 1; } if (sha_phase < 4) { code[(kShaPos + ShaCycleType::CONTROL) * numSteps + cycle] = 1; code[kP1Pos * numSteps + cycle] = sha_phase; code[kP2Pos * numSteps + cycle] = (sha_phase == 0); code[(kDataPos + 0) * numSteps + cycle] = kInit[3 - sha_phase] & 0xffff; code[(kDataPos + 1) * numSteps + cycle] = kInit[3 - sha_phase] >> 16; code[(kData2Pos + 0) * numSteps + cycle] = kInit[7 - sha_phase] & 0xffff; code[(kData2Pos + 1) * numSteps + cycle] = kInit[7 - sha_phase] >> 16; } else if (sha_phase < 20) { code[(kShaPos + ShaCycleType::LOAD) * numSteps + cycle] = 1; code[(kDataPos + 0) * numSteps + cycle] = kRound[sha_phase - 4] & 0xffff; code[(kDataPos + 1) * numSteps + cycle] = kRound[sha_phase - 4] >> 16; } else if (sha_phase < 68) { code[(kShaPos + ShaCycleType::MIX) * numSteps + cycle] = 1; code[kP1Pos * numSteps + cycle] = (sha_phase >= 64); code[kP2Pos * numSteps + cycle] = (sha_phase == 67); code[(kDataPos + 0) * numSteps + cycle] = kRound[sha_phase - 4] & 0xffff; code[(kDataPos + 1) * numSteps + cycle] = kRound[sha_phase - 4] >> 16; } else { code[kP1Pos * numSteps + cycle] = sha_phase - 68 + 4; code[(kShaPos + ShaCycleType::CONTROL) * numSteps + cycle] = 1; } } code[(kTypePos + CodeCycleType::FINI) * numSteps + cycle] = 1; } } // namespace risc0