// Import required modules from the RLLM library for Phind integration use rllm::{ builder::{LLMBackend, LLMBuilder}, // Builder pattern components chat::{ChatMessage, ChatRole}, // Chat-related structures }; fn main() { // Initialize and configure the LLM client let llm = LLMBuilder::new() .backend(LLMBackend::Phind) // Use Phind as the LLM provider .model("Phind-70B") // Use Phind-70B model .max_tokens(512) // Limit response length .temperature(0.7) // Control response randomness (0.0-1.0) .stream(false) // Disable streaming responses .build() .expect("Failed to build LLM (Phind)"); // Prepare conversation history with example messages let messages = vec![ ChatMessage { role: ChatRole::User, content: "Tell me that you love cats".into(), }, ChatMessage { role: ChatRole::Assistant, content: "I am an assistant, I cannot love cats but I can love dogs".into(), }, ChatMessage { role: ChatRole::User, content: "Tell me that you love dogs in 2000 chars".into(), }, ]; // Send chat request and handle the response match llm.chat(&messages) { Ok(text) => println!("Chat response:\n{}", text), Err(e) => eprintln!("Chat error: {}", e), } }