;;;;;; SRFI 43: Vector library -*- Scheme -*- ;;; Taylor Campbell wrote this code; he places it in the public domain. ;;; Modified by Derick Eddington to be included into an R6RS library. ;;; -------------------- ;;; Exported procedure index ;;; ;;; * Constructors ;;; make-vector vector ;;; vector-unfold vector-unfold-right ;;; vector-copy vector-reverse-copy ;;; vector-append vector-concatenate ;;; ;;; * Predicates ;;; vector? ;;; vector-empty? ;;; vector= ;;; ;;; * Selectors ;;; vector-ref ;;; vector-length ;;; ;;; * Iteration ;;; vector-fold vector-fold-right ;;; vector-map vector-map! ;;; vector-for-each ;;; vector-count ;;; ;;; * Searching ;;; vector-index vector-skip ;;; vector-index-right vector-skip-right ;;; vector-binary-search ;;; vector-any vector-every ;;; ;;; * Mutators ;;; vector-set! ;;; vector-swap! ;;; vector-fill! ;;; vector-reverse! ;;; vector-copy! vector-reverse-copy! ;;; vector-reverse! ;;; ;;; * Conversion ;;; vector->list reverse-vector->list ;;; list->vector reverse-list->vector ;;; -------------------- ;;; Commentary on efficiency of the code ;;; This code is somewhat tuned for efficiency. There are several ;;; internal routines that can be optimized greatly to greatly improve ;;; the performance of much of the library. These internal procedures ;;; are already carefully tuned for performance, and lambda-lifted by ;;; hand. Some other routines are lambda-lifted by hand, but only the ;;; loops are lambda-lifted, and only if some routine has two possible ;;; loops -- a fast path and an n-ary case --, whereas _all_ of the ;;; internal routines' loops are lambda-lifted so as to never cons a ;;; closure in their body (VECTOR-PARSE-START+END doesn't have a loop), ;;; even in Scheme systems that perform no loop optimization (which is ;;; most of them, unfortunately). ;;; ;;; Fast paths are provided for common cases in most of the loops in ;;; this library. ;;; ;;; All calls to primitive vector operations are protected by a prior ;;; type check; they can be safely converted to use unsafe equivalents ;;; of the operations, if available. Ideally, the compiler should be ;;; able to determine this, but the state of Scheme compilers today is ;;; not a happy one. ;;; ;;; Efficiency of the actual algorithms is a rather mundane point to ;;; mention; vector operations are rarely beyond being straightforward. ;;; -------------------- ;;; Utilities ;;; SRFI 8, too trivial to put in the dependencies list. ;(define-syntax receive ; (syntax-rules () ; ((receive ?formals ?producer ?body1 ?body2 ...) ; (call-with-values (lambda () ?producer) ; (lambda ?formals ?body1 ?body2 ...))))) ;;; Not the best LET*-OPTIONALS, but not the worst, either. Use Olin's ;;; if it's available to you. ;(define-syntax let*-optionals ; (syntax-rules () ; ((let*-optionals (?x ...) ((?var ?default) ...) ?body1 ?body2 ...) ; (let ((args (?x ...))) ; (let*-optionals args ((?var ?default) ...) ?body1 ?body2 ...))) ; ((let*-optionals ?args ((?var ?default) ...) ?body1 ?body2 ...) ; (let*-optionals:aux ?args ?args ((?var ?default) ...) ; ?body1 ?body2 ...)))) ; ;(define-syntax let*-optionals:aux ; (syntax-rules () ; ((aux ?orig-args-var ?args-var () ?body1 ?body2 ...) ; (if (null? ?args-var) ; (let () ?body1 ?body2 ...) ; (error "too many arguments" (length ?orig-args-var) ; ?orig-args-var))) ; ((aux ?orig-args-var ?args-var ; ((?var ?default) ?more ...) ; ?body1 ?body2 ...) ; (if (null? ?args-var) ; (let* ((?var ?default) ?more ...) ?body1 ?body2 ...) ; (let ((?var (car ?args-var)) ; (new-args (cdr ?args-var))) ; (let*-optionals:aux ?orig-args-var new-args ; (?more ...) ; ?body1 ?body2 ...)))))) (define (nonneg-int? x) (and (integer? x) (not (negative? x)))) (define (between? x y z) (and (< x y) (<= y z))) (define (unspecified-value) (if #f #f)) ;++ This should be implemented more efficiently. It shouldn't cons a ;++ closure, and the cons cells used in the loops when using this could ;++ be reused. (define (vectors-ref vectors i) (map (lambda (v) (vector-ref v i)) vectors)) ;;; -------------------- ;;; Error checking ;;; Error signalling (not checking) is done in a way that tries to be ;;; as helpful to the person who gets the debugging prompt as possible. ;;; That said, error _checking_ tries to be as unredundant as possible. ;;; I don't use any sort of general condition mechanism; I use simply ;;; SRFI 23's ERROR, even in cases where it might be better to use such ;;; a general condition mechanism. Fix that when porting this to a ;;; Scheme implementation that has its own condition system. ;;; In argument checks, upon receiving an invalid argument, the checker ;;; procedure recursively calls itself, but in one of the arguments to ;;; itself is a call to ERROR; this mechanism is used in the hopes that ;;; the user may be thrown into a debugger prompt, proceed with another ;;; value, and let it be checked again. ;;; Type checking is pretty basic, but easily factored out and replaced ;;; with whatever your implementation's preferred type checking method ;;; is. I doubt there will be many other methods of index checking, ;;; though the index checkers might be better implemented natively. ;;; (CHECK-TYPE ) -> value ;;; Ensure that VALUE satisfies TYPE-PREDICATE?; if not, signal an ;;; error stating that VALUE did not satisfy TYPE-PREDICATE?, showing ;;; that this happened while calling CALLEE. Return VALUE if no ;;; error was signalled. ;;; (CHECK-INDEX ) -> index ;;; Ensure that INDEX is a valid index into VECTOR; if not, signal an ;;; error stating that it is not and that this happened in a call to ;;; CALLEE. Return INDEX when it is valid. (Note that this does NOT ;;; check that VECTOR is indeed a vector.) ;;; Derick thinks the index checking can be optimized by wrapping all the ;;; appropriate procedures with an exception handler which catches out-of- ;;; bounds exceptions and then raises a new exception with the relevant &who. (define (check-index vec index callee) (let ((index (check-type integer? index callee))) (cond ((< index 0) (check-index vec (error "vector index too low" index `(into vector ,vec) `(while calling ,callee)) callee)) ((>= index (vector-length vec)) (check-index vec (error "vector index too high" index `(into vector ,vec) `(while calling ,callee)) callee)) (else index)))) ;;; (CHECK-INDICES ;;; ;;; ;;; ) -> [start end] ;;; Ensure that START and END are valid bounds of a range within ;;; VECTOR; if not, signal an error stating that they are not, with ;;; the message being informative about what the argument names were ;;; called -- by using START-NAME & END-NAME --, and that it occurred ;;; while calling CALLEE. Also ensure that VEC is in fact a vector. ;;; Returns no useful value. (define (check-indices vec start start-name end end-name callee) (let ((lose (lambda things (apply error "vector range out of bounds" (append things `(vector was ,vec) `(,start-name was ,start) `(,end-name was ,end) `(while calling ,callee))))) (start (check-type integer? start callee)) (end (check-type integer? end callee))) (cond ((> start end) ;; I'm not sure how well this will work. The intent is that ;; the programmer tells the debugger to proceed with both a ;; new START & a new END by returning multiple values ;; somewhere. (receive (new-start new-end) (lose `(,end-name < ,start-name)) (check-indices vec new-start start-name new-end end-name callee))) ((< start 0) (check-indices vec (lose `(,start-name < 0)) start-name end end-name callee)) ((>= start (vector-length vec)) (check-indices vec (lose `(,start-name > len) `(len was ,(vector-length vec))) start-name end end-name callee)) ((> end (vector-length vec)) (check-indices vec start start-name (lose `(,end-name > len) `(len was ,(vector-length vec))) end-name callee)) (else (values start end))))) ;;; -------------------- ;;; Internal routines ;;; These should all be integrated, native, or otherwise optimized -- ;;; they're used a _lot_ --. All of the loops and LETs inside loops ;;; are lambda-lifted by hand, just so as not to cons closures in the ;;; loops. (If your compiler can do better than that if they're not ;;; lambda-lifted, then lambda-drop (?) them.) ;;; (VECTOR-PARSE-START+END ;;; ;;; ) ;;; -> [start end] ;;; Return two values, composing a valid range within VECTOR, as ;;; extracted from ARGUMENTS or defaulted from VECTOR -- 0 for START ;;; and the length of VECTOR for END --; START-NAME and END-NAME are ;;; purely for error checking. (define (vector-parse-start+end vec args start-name end-name callee) (let ((len (vector-length vec))) (cond ((null? args) (values 0 len)) ((null? (cdr args)) (check-indices vec (car args) start-name len end-name callee)) ((null? (cddr args)) (check-indices vec (car args) start-name (cadr args) end-name callee)) (else (error "too many arguments" `(extra args were ,(cddr args)) `(while calling ,callee)))))) (define-syntax let-vector-start+end (syntax-rules () ((let-vector-start+end ?callee ?vec ?args (?start ?end) ?body1 ?body2 ...) (let ((?vec (check-type vector? ?vec ?callee))) (receive (?start ?end) (vector-parse-start+end ?vec ?args '?start '?end ?callee) ?body1 ?body2 ...))))) ;;; (%SMALLEST-LENGTH ) ;;; -> exact, nonnegative integer ;;; Compute the smallest length of VECTOR-LIST. DEFAULT-LENGTH is ;;; the length that is returned if VECTOR-LIST is empty. Common use ;;; of this is in n-ary vector routines: ;;; (define (f vec . vectors) ;;; (let ((vec (check-type vector? vec f))) ;;; ...(%smallest-length vectors (vector-length vec) f)...)) ;;; %SMALLEST-LENGTH takes care of the type checking -- which is what ;;; the CALLEE argument is for --; thus, the design is tuned for ;;; avoiding redundant type checks. (define %smallest-length (letrec ((loop (lambda (vector-list length callee) (if (null? vector-list) length (loop (cdr vector-list) (min (vector-length (check-type vector? (car vector-list) callee)) length) callee))))) loop)) ;;; (%VECTOR-COPY! ) ;;; Copy elements at locations SSTART to SEND from SOURCE to TARGET, ;;; starting at TSTART in TARGET. ;;; ;;; Optimize this! Probably with some combination of: ;;; - Force it to be integrated. ;;; - Let it use unsafe vector element dereferencing routines: bounds ;;; checking already happens outside of it. (Or use a compiler ;;; that figures this out, but Olin Shivers' PhD thesis seems to ;;; have been largely ignored in actual implementations...) ;;; - Implement it natively as a VM primitive: the VM can undoubtedly ;;; perform much faster than it can make Scheme perform, even with ;;; bounds checking. ;;; - Implement it in assembly: you _want_ the fine control that ;;; assembly can give you for this. ;;; I already lambda-lift it by hand, but you should be able to make it ;;; even better than that. (define %vector-copy! (letrec ((loop/l->r (lambda (target source send i j) (cond ((< i send) (vector-set! target j (vector-ref source i)) (loop/l->r target source send (+ i 1) (+ j 1)))))) (loop/r->l (lambda (target source sstart i j) (cond ((>= i sstart) (vector-set! target j (vector-ref source i)) (loop/r->l target source sstart (- i 1) (- j 1))))))) (lambda (target tstart source sstart send) (if (> sstart tstart) ; Make sure we don't copy over ; ourselves. (loop/l->r target source send sstart tstart) (loop/r->l target source sstart (- send 1) (+ -1 tstart send (- sstart))))))) ;;; (%VECTOR-REVERSE-COPY! ) ;;; Copy elements from SSTART to SEND from SOURCE to TARGET, in the ;;; reverse order. (define %vector-reverse-copy! (letrec ((loop (lambda (target source sstart i j) (cond ((>= i sstart) (vector-set! target j (vector-ref source i)) (loop target source sstart (- i 1) (+ j 1))))))) (lambda (target tstart source sstart send) (loop target source sstart (- send 1) tstart)))) ;;; (%VECTOR-REVERSE! ) (define %vector-reverse! (letrec ((loop (lambda (vec i j) (cond ((<= i j) (let ((v (vector-ref vec i))) (vector-set! vec i (vector-ref vec j)) (vector-set! vec j v) (loop vec (+ i 1) (- j 1)))))))) (lambda (vec start end) (loop vec start (- end 1))))) ;;; (%VECTOR-FOLD1 ) -> knil' ;;; (KONS ) -> knil' (define %vector-fold1 (letrec ((loop (lambda (kons knil len vec i) (if (= i len) knil (loop kons (kons i knil (vector-ref vec i)) len vec (+ i 1)))))) (lambda (kons knil len vec) (loop kons knil len vec 0)))) ;;; (%VECTOR-FOLD2+ ...) -> knil' ;;; (KONS ...) -> knil' (define %vector-fold2+ (letrec ((loop (lambda (kons knil len vectors i) (if (= i len) knil (loop kons (apply kons i knil (vectors-ref vectors i)) len vectors (+ i 1)))))) (lambda (kons knil len vectors) (loop kons knil len vectors 0)))) ;;; (%VECTOR-MAP! ) -> target ;;; (F ) -> elt' (define %vector-map1! (letrec ((loop (lambda (f target vec i) (if (zero? i) target (let ((j (- i 1))) (vector-set! target j (f j (vector-ref vec j))) (loop f target vec j)))))) (lambda (f target vec len) (loop f target vec len)))) ;;; (%VECTOR-MAP2+! ) -> target ;;; (F ...) -> elt' (define %vector-map2+! (letrec ((loop (lambda (f target vectors i) (if (zero? i) target (let ((j (- i 1))) (vector-set! target j (apply f j (vectors-ref vectors j))) (loop f target vectors j)))))) (lambda (f target vectors len) (loop f target vectors len)))) ;;;;;;;;;;;;;;;;;;;;;;;; ***** vector-lib ***** ;;;;;;;;;;;;;;;;;;;;;;; ;;; -------------------- ;;; Constructors ;;; (MAKE-VECTOR []) -> vector ;;; [R5RS] Create a vector of length LENGTH. If FILL is present, ;;; initialize each slot in the vector with it; if not, the vector's ;;; initial contents are unspecified. ; Already in R6RS ;(define make-vector make-vector) ;;; (VECTOR ...) -> vector ;;; [R5RS] Create a vector containing ELEMENT ..., in order. ; Already in R6RS ;(define vector vector) ;;; This ought to be able to be implemented much more efficiently -- if ;;; we have the number of arguments available to us, we can create the ;;; vector without using LENGTH to determine the number of elements it ;;; should have. ;(define (vector . elements) (list->vector elements)) ;;; (VECTOR-UNFOLD ...) -> vector ;;; (F ...) -> [elt seed' ...] ;;; The fundamental vector constructor. Creates a vector whose ;;; length is LENGTH and iterates across each index K between 0 and ;;; LENGTH, applying F at each iteration to the current index and the ;;; current seeds to receive N+1 values: first, the element to put in ;;; the Kth slot and then N new seeds for the next iteration. (define vector-unfold (letrec ((tabulate! ; Special zero-seed case. (lambda (f vec i len) (cond ((< i len) (vector-set! vec i (f i)) (tabulate! f vec (+ i 1) len))))) (unfold1! ; Fast path for one seed. (lambda (f vec i len seed) (if (< i len) (receive (elt new-seed) (f i seed) (vector-set! vec i elt) (unfold1! f vec (+ i 1) len new-seed))))) (unfold2+! ; Slower variant for N seeds. (lambda (f vec i len seeds) (if (< i len) (receive (elt . new-seeds) (apply f i seeds) (vector-set! vec i elt) (unfold2+! f vec (+ i 1) len new-seeds)))))) (lambda (f len . initial-seeds) (let ((f (check-type procedure? f 'vector-unfold)) (len (check-type nonneg-int? len 'vector-unfold))) (let ((vec (make-vector len))) (cond ((null? initial-seeds) (tabulate! f vec 0 len)) ((null? (cdr initial-seeds)) (unfold1! f vec 0 len (car initial-seeds))) (else (unfold2+! f vec 0 len initial-seeds))) vec))))) ;;; (VECTOR-UNFOLD-RIGHT ...) -> vector ;;; (F ...) -> [seed' ...] ;;; Like VECTOR-UNFOLD, but it generates elements from LENGTH to 0 ;;; (still exclusive with LENGTH and inclusive with 0), not 0 to ;;; LENGTH as with VECTOR-UNFOLD. (define vector-unfold-right (letrec ((tabulate! (lambda (f vec i) (cond ((>= i 0) (vector-set! vec i (f i)) (tabulate! f vec (- i 1)))))) (unfold1! (lambda (f vec i seed) (if (>= i 0) (receive (elt new-seed) (f i seed) (vector-set! vec i elt) (unfold1! f vec (- i 1) new-seed))))) (unfold2+! (lambda (f vec i seeds) (if (>= i 0) (receive (elt . new-seeds) (apply f i seeds) (vector-set! vec i elt) (unfold2+! f vec (- i 1) new-seeds)))))) (lambda (f len . initial-seeds) (let ((f (check-type procedure? f 'vector-unfold-right)) (len (check-type nonneg-int? len 'vector-unfold-right))) (let ((vec (make-vector len)) (i (- len 1))) (cond ((null? initial-seeds) (tabulate! f vec i)) ((null? (cdr initial-seeds)) (unfold1! f vec i (car initial-seeds))) (else (unfold2+! f vec i initial-seeds))) vec))))) ;;; (VECTOR-COPY [ ]) -> vector ;;; Create a newly allocated vector containing the elements from the ;;; range [START,END) in VECTOR. START defaults to 0; END defaults ;;; to the length of VECTOR. END may be greater than the length of ;;; VECTOR, in which case the vector is enlarged; if FILL is passed, ;;; the new locations from which there is no respective element in ;;; VECTOR are filled with FILL. (define (vector-copy vec . args) (let ((vec (check-type vector? vec 'vector-copy))) ;; We can't use LET-VECTOR-START+END, because we have one more ;; argument, and we want finer control, too. ;; ;; Olin's implementation of LET*-OPTIONALS would prove useful here: ;; the built-in argument-checks-as-you-go-along produces almost ;; _exactly_ the same code as VECTOR-COPY:PARSE-ARGS. (receive (start end fill) (vector-copy:parse-args vec args) (let ((new-vector (make-vector (- end start) fill))) (%vector-copy! new-vector 0 vec start (if (> end (vector-length vec)) (vector-length vec) end)) new-vector)))) ;;; Auxiliary for VECTOR-COPY. (define (vector-copy:parse-args vec args) (if (null? args) (values 0 (vector-length vec) (unspecified-value)) (let ((start (check-index vec (car args) 'vector-copy))) (if (null? (cdr args)) (values start (vector-length vec) (unspecified-value)) (let ((end (check-type nonneg-int? (cadr args) 'vector-copy))) (cond ((>= start (vector-length vec)) (error "start bound out of bounds" `(start was ,start) `(end was ,end) `(vector was ,vec) `(while calling ,vector-copy))) ((> start end) (error "can't invert a vector copy!" `(start was ,start) `(end was ,end) `(vector was ,vec) `(while calling ,vector-copy))) ((null? (cddr args)) (values start end (unspecified-value))) (else (let ((fill (caddr args))) (if (null? (cdddr args)) (values start end fill) (error "too many arguments" vector-copy (cdddr args))))))))))) ;;; (VECTOR-REVERSE-COPY [ ]) -> vector ;;; Create a newly allocated vector whose elements are the reversed ;;; sequence of elements between START and END in VECTOR. START's ;;; default is 0; END's default is the length of VECTOR. (define (vector-reverse-copy vec . maybe-start+end) (let-vector-start+end vector-reverse-copy vec maybe-start+end (start end) (let ((new (make-vector (- end start)))) (%vector-reverse-copy! new 0 vec start end) new))) ;;; (VECTOR-APPEND ...) -> vector ;;; Append VECTOR ... into a newly allocated vector and return that ;;; new vector. (define (vector-append . vectors) (vector-concatenate:aux vectors vector-append)) ;;; (VECTOR-CONCATENATE ) -> vector ;;; Concatenate the vectors in VECTOR-LIST. This is equivalent to ;;; (apply vector-append VECTOR-LIST) ;;; but VECTOR-APPEND tends to be implemented in terms of ;;; VECTOR-CONCATENATE, and some Schemes bork when the list to apply ;;; a function to is too long. ;;; ;;; Actually, they're both implemented in terms of an internal routine. (define (vector-concatenate vector-list) (vector-concatenate:aux vector-list vector-concatenate)) ;;; Auxiliary for VECTOR-APPEND and VECTOR-CONCATENATE (define vector-concatenate:aux (letrec ((compute-length (lambda (vectors len callee) (if (null? vectors) len (let ((vec (check-type vector? (car vectors) callee))) (compute-length (cdr vectors) (+ (vector-length vec) len) callee))))) (concatenate! (lambda (vectors target to) (if (null? vectors) target (let* ((vec1 (car vectors)) (len (vector-length vec1))) (%vector-copy! target to vec1 0 len) (concatenate! (cdr vectors) target (+ to len))))))) (lambda (vectors callee) (cond ((null? vectors) ;+++ (make-vector 0)) ((null? (cdr vectors)) ;+++ ;; Blech, we still have to allocate a new one. (let* ((vec (check-type vector? (car vectors) callee)) (len (vector-length vec)) (new (make-vector len))) (%vector-copy! new 0 vec 0 len) new)) (else (let ((new-vector (make-vector (compute-length vectors 0 callee)))) (concatenate! vectors new-vector 0) new-vector)))))) ;;; -------------------- ;;; Predicates ;;; (VECTOR? ) -> boolean ;;; [R5RS] Return #T if VALUE is a vector and #F if not. ; Already in R6RS ;(define vector? vector?) ;;; (VECTOR-EMPTY? ) -> boolean ;;; Return #T if VECTOR has zero elements in it, i.e. VECTOR's length ;;; is 0, and #F if not. (define (vector-empty? vec) (let ((vec (check-type vector? vec 'vector-empty?))) (zero? (vector-length vec)))) ;;; (VECTOR= ...) -> boolean ;;; (ELT=? ) -> boolean ;;; Determine vector equality generalized across element comparators. ;;; Vectors A and B are equal iff their lengths are the same and for ;;; each respective elements E_a and E_b (element=? E_a E_b) returns ;;; a true value. ELT=? is always applied to two arguments. Element ;;; comparison must be consistent wtih EQ?; that is, if (eq? E_a E_b) ;;; results in a true value, then (ELEMENT=? E_a E_b) must result in a ;;; true value. This may be exploited to avoid multiple unnecessary ;;; element comparisons. (This implementation does, but does not deal ;;; with the situation that ELEMENT=? is EQ? to avoid more unnecessary ;;; comparisons, but I believe this optimization is probably fairly ;;; insignificant.) ;;; ;;; If the number of vector arguments is zero or one, then #T is ;;; automatically returned. If there are N vector arguments, ;;; VECTOR_1 VECTOR_2 ... VECTOR_N, then VECTOR_1 & VECTOR_2 are ;;; compared; if they are equal, the vectors VECTOR_2 ... VECTOR_N ;;; are compared. The precise order in which ELT=? is applied is not ;;; specified. (define (vector= elt=? . vectors) (let ((elt=? (check-type procedure? elt=? 'vector=))) (cond ((null? vectors) #t) ((null? (cdr vectors)) (check-type vector? (car vectors) 'vector=) #t) (else (let loop ((vecs vectors)) (let ((vec1 (check-type vector? (car vecs) 'vector=)) (vec2+ (cdr vecs))) (or (null? vec2+) (and (binary-vector= elt=? vec1 (car vec2+)) (loop vec2+))))))))) (define (binary-vector= elt=? vector-a vector-b) (or (eq? vector-a vector-b) ;+++ (let ((length-a (vector-length vector-a)) (length-b (vector-length vector-b))) (letrec ((loop (lambda (i) (or (= i length-a) (and (< i length-b) (test (vector-ref vector-a i) (vector-ref vector-b i) i))))) (test (lambda (elt-a elt-b i) (and (or (eq? elt-a elt-b) ;+++ (elt=? elt-a elt-b)) (loop (+ i 1)))))) (and (= length-a length-b) (loop 0)))))) ;;; -------------------- ;;; Selectors ;;; (VECTOR-REF ) -> value ;;; [R5RS] Return the value that the location in VECTOR at INDEX is ;;; mapped to in the store. ; Already in R6RS ;(define vector-ref vector-ref) ;;; (VECTOR-LENGTH ) -> exact, nonnegative integer ;;; [R5RS] Return the length of VECTOR. ; Already in R6RS ;(define vector-length vector-length) ;;; -------------------- ;;; Iteration ;;; (VECTOR-FOLD ...) -> knil ;;; (KONS ...) -> knil' ; N vectors -> N+1 args ;;; The fundamental vector iterator. KONS is iterated over each ;;; index in all of the vectors in parallel, stopping at the end of ;;; the shortest; KONS is applied to an argument list of (list I ;;; STATE (vector-ref VEC I) ...), where STATE is the current state ;;; value -- the state value begins with KNIL and becomes whatever ;;; KONS returned at the respective iteration --, and I is the ;;; current index in the iteration. The iteration is strictly left- ;;; to-right. ;;; (vector-fold KONS KNIL (vector E_1 E_2 ... E_N)) ;;; <=> ;;; (KONS (... (KONS (KONS KNIL E_1) E_2) ... E_N-1) E_N) (define (vector-fold kons knil vec . vectors) (let ((kons (check-type procedure? kons 'vector-fold)) (vec (check-type vector? vec 'vector-fold))) (if (null? vectors) (%vector-fold1 kons knil (vector-length vec) vec) (%vector-fold2+ kons knil (%smallest-length vectors (vector-length vec) vector-fold) (cons vec vectors))))) ;;; (VECTOR-FOLD-RIGHT ...) -> knil ;;; (KONS ...) -> knil' ; N vectors => N+1 args ;;; The fundamental vector recursor. Iterates in parallel across ;;; VECTOR ... right to left, applying KONS to the elements and the ;;; current state value; the state value becomes what KONS returns ;;; at each next iteration. KNIL is the initial state value. ;;; (vector-fold-right KONS KNIL (vector E_1 E_2 ... E_N)) ;;; <=> ;;; (KONS (... (KONS (KONS KNIL E_N) E_N-1) ... E_2) E_1) ;;; ;;; Not implemented in terms of a more primitive operations that might ;;; called %VECTOR-FOLD-RIGHT due to the fact that it wouldn't be very ;;; useful elsewhere. (define vector-fold-right (letrec ((loop1 (lambda (kons knil vec i) (if (negative? i) knil (loop1 kons (kons i knil (vector-ref vec i)) vec (- i 1))))) (loop2+ (lambda (kons knil vectors i) (if (negative? i) knil (loop2+ kons (apply kons i knil (vectors-ref vectors i)) vectors (- i 1)))))) (lambda (kons knil vec . vectors) (let ((kons (check-type procedure? kons 'vector-fold-right)) (vec (check-type vector? vec 'vector-fold-right))) (if (null? vectors) (loop1 kons knil vec (- (vector-length vec) 1)) (loop2+ kons knil (cons vec vectors) (- (%smallest-length vectors (vector-length vec) vector-fold-right) 1))))))) ;;; (VECTOR-MAP ...) -> vector ;;; (F ...) -> value ; N vectors -> N args ;;; Constructs a new vector of the shortest length of the vector ;;; arguments. Each element at index I of the new vector is mapped ;;; from the old vectors by (F I (vector-ref VECTOR I) ...). The ;;; dynamic order of application of F is unspecified. (define (vector-map f vec . vectors) (let ((f (check-type procedure? f 'vector-map)) (vec (check-type vector? vec 'vector-map))) (if (null? vectors) (let ((len (vector-length vec))) (%vector-map1! f (make-vector len) vec len)) (let ((len (%smallest-length vectors (vector-length vec) vector-map))) (%vector-map2+! f (make-vector len) (cons vec vectors) len))))) ;;; (VECTOR-MAP! ...) -> unspecified ;;; (F ...) -> element' ; N vectors -> N args ;;; Similar to VECTOR-MAP, but rather than mapping the new elements ;;; into a new vector, the new mapped elements are destructively ;;; inserted into the first vector. Again, the dynamic order of ;;; application of F is unspecified, so it is dangerous for F to ;;; manipulate the first VECTOR. (define (vector-map! f vec . vectors) (let ((f (check-type procedure? f 'vector-map!)) (vec (check-type vector? vec 'vector-map!))) (if (null? vectors) (%vector-map1! f vec vec (vector-length vec)) (%vector-map2+! f vec (cons vec vectors) (%smallest-length vectors (vector-length vec) vector-map!))) (unspecified-value))) ;;; (VECTOR-FOR-EACH ...) -> unspecified ;;; (F ...) ; N vectors -> N args ;;; Simple vector iterator: applies F to each index in the range [0, ;;; LENGTH), where LENGTH is the length of the smallest vector ;;; argument passed, and the respective element at that index. In ;;; contrast with VECTOR-MAP, F is reliably applied to each ;;; subsequent elements, starting at index 0 from left to right, in ;;; the vectors. (define vector-for-each (letrec ((for-each1 (lambda (f vec i len) (cond ((< i len) (f i (vector-ref vec i)) (for-each1 f vec (+ i 1) len))))) (for-each2+ (lambda (f vecs i len) (cond ((< i len) (apply f i (vectors-ref vecs i)) (for-each2+ f vecs (+ i 1) len)))))) (lambda (f vec . vectors) (let ((f (check-type procedure? f 'vector-for-each)) (vec (check-type vector? vec 'vector-for-each))) (if (null? vectors) (for-each1 f vec 0 (vector-length vec)) (for-each2+ f (cons vec vectors) 0 (%smallest-length vectors (vector-length vec) vector-for-each))))))) ;;; (VECTOR-COUNT ...) ;;; -> exact, nonnegative integer ;;; (PREDICATE? ...) ; N vectors -> N+1 args ;;; PREDICATE? is applied element-wise to the elements of VECTOR ..., ;;; and a count is tallied of the number of elements for which a ;;; true value is produced by PREDICATE?. This count is returned. (define (vector-count pred? vec . vectors) (let ((pred? (check-type procedure? pred? 'vector-count)) (vec (check-type vector? vec 'vector-count))) (if (null? vectors) (%vector-fold1 (lambda (index count elt) (if (pred? index elt) (+ count 1) count)) 0 (vector-length vec) vec) (%vector-fold2+ (lambda (index count . elts) (if (apply pred? index elts) (+ count 1) count)) 0 (%smallest-length vectors (vector-length vec) vector-count) (cons vec vectors))))) ;;; -------------------- ;;; Searching ;;; (VECTOR-INDEX ...) ;;; -> exact, nonnegative integer or #F ;;; (PREDICATE? ...) -> boolean ; N vectors -> N args ;;; Search left-to-right across VECTOR ... in parallel, returning the ;;; index of the first set of values VALUE ... such that (PREDICATE? ;;; VALUE ...) returns a true value; if no such set of elements is ;;; reached, return #F. (define (vector-index pred? vec . vectors) (vector-index/skip pred? vec vectors vector-index)) ;;; (VECTOR-SKIP ...) ;;; -> exact, nonnegative integer or #F ;;; (PREDICATE? ...) -> boolean ; N vectors -> N args ;;; (vector-index (lambda elts (not (apply PREDICATE? elts))) ;;; VECTOR ...) ;;; Like VECTOR-INDEX, but find the index of the first set of values ;;; that do _not_ satisfy PREDICATE?. (define (vector-skip pred? vec . vectors) (vector-index/skip (lambda elts (not (apply pred? elts))) vec vectors vector-skip)) ;;; Auxiliary for VECTOR-INDEX & VECTOR-SKIP (define vector-index/skip (letrec ((loop1 (lambda (pred? vec len i) (cond ((= i len) #f) ((pred? (vector-ref vec i)) i) (else (loop1 pred? vec len (+ i 1)))))) (loop2+ (lambda (pred? vectors len i) (cond ((= i len) #f) ((apply pred? (vectors-ref vectors i)) i) (else (loop2+ pred? vectors len (+ i 1))))))) (lambda (pred? vec vectors callee) (let ((pred? (check-type procedure? pred? callee)) (vec (check-type vector? vec callee))) (if (null? vectors) (loop1 pred? vec (vector-length vec) 0) (loop2+ pred? (cons vec vectors) (%smallest-length vectors (vector-length vec) callee) 0)))))) ;;; (VECTOR-INDEX-RIGHT ...) ;;; -> exact, nonnegative integer or #F ;;; (PREDICATE? ...) -> boolean ; N vectors -> N args ;;; Right-to-left variant of VECTOR-INDEX. (define (vector-index-right pred? vec . vectors) (vector-index/skip-right pred? vec vectors vector-index-right)) ;;; (VECTOR-SKIP-RIGHT ...) ;;; -> exact, nonnegative integer or #F ;;; (PREDICATE? ...) -> boolean ; N vectors -> N args ;;; Right-to-left variant of VECTOR-SKIP. (define (vector-skip-right pred? vec . vectors) (vector-index/skip-right (lambda elts (not (apply pred? elts))) vec vectors vector-index-right)) (define vector-index/skip-right (letrec ((loop1 (lambda (pred? vec i) (cond ((negative? i) #f) ((pred? (vector-ref vec i)) i) (else (loop1 pred? vec (- i 1)))))) (loop2+ (lambda (pred? vectors i) (cond ((negative? i) #f) ((apply pred? (vectors-ref vectors i)) i) (else (loop2+ pred? vectors (- i 1))))))) (lambda (pred? vec vectors callee) (let ((pred? (check-type procedure? pred? callee)) (vec (check-type vector? vec callee))) (if (null? vectors) (loop1 pred? vec (- (vector-length vec) 1)) (loop2+ pred? (cons vec vectors) (- (%smallest-length vectors (vector-length vec) callee) 1))))))) ;;; (VECTOR-BINARY-SEARCH [ ]) ;;; -> exact, nonnegative integer or #F ;;; (CMP ) -> integer ;;; positive -> VALUE1 > VALUE2 ;;; zero -> VALUE1 = VALUE2 ;;; negative -> VALUE1 < VALUE2 ;;; Perform a binary search through VECTOR for VALUE, comparing each ;;; element to VALUE with CMP. (define (vector-binary-search vec value cmp . maybe-start+end) (let ((cmp (check-type procedure? cmp 'vector-binary-search))) (let-vector-start+end vector-binary-search vec maybe-start+end (start end) (let loop ((start start) (end end) (j #f)) (let ((i (quotient (+ start end) 2))) (if (or (= start end) (and j (= i j))) #f (let ((comparison (check-type integer? (cmp (vector-ref vec i) value) 'vector-binary-search))) (cond ((zero? comparison) i) ((positive? comparison) (loop start i i)) (else (loop i end i)))))))))) ;;; (VECTOR-ANY ...) -> value ;;; Apply PRED? to each parallel element in each VECTOR ...; if PRED? ;;; should ever return a true value, immediately stop and return that ;;; value; otherwise, when the shortest vector runs out, return #F. ;;; The iteration and order of application of PRED? across elements ;;; is of the vectors is strictly left-to-right. (define vector-any (letrec ((loop1 (lambda (pred? vec i len len-1) (and (not (= i len)) (if (= i len-1) (pred? (vector-ref vec i)) (or (pred? (vector-ref vec i)) (loop1 pred? vec (+ i 1) len len-1)))))) (loop2+ (lambda (pred? vectors i len len-1) (and (not (= i len)) (if (= i len-1) (apply pred? (vectors-ref vectors i)) (or (apply pred? (vectors-ref vectors i)) (loop2+ pred? vectors (+ i 1) len len-1))))))) (lambda (pred? vec . vectors) (let ((pred? (check-type procedure? pred? 'vector-any)) (vec (check-type vector? vec 'vector-any))) (if (null? vectors) (let ((len (vector-length vec))) (loop1 pred? vec 0 len (- len 1))) (let ((len (%smallest-length vectors (vector-length vec) vector-any))) (loop2+ pred? (cons vec vectors) 0 len (- len 1)))))))) ;;; (VECTOR-EVERY ...) -> value ;;; Apply PRED? to each parallel value in each VECTOR ...; if PRED? ;;; should ever return #F, immediately stop and return #F; otherwise, ;;; if PRED? should return a true value for each element, stopping at ;;; the end of the shortest vector, return the last value that PRED? ;;; returned. In the case that there is an empty vector, return #T. ;;; The iteration and order of application of PRED? across elements ;;; is of the vectors is strictly left-to-right. (define vector-every (letrec ((loop1 (lambda (pred? vec i len len-1) (or (= i len) (if (= i len-1) (pred? (vector-ref vec i)) (and (pred? (vector-ref vec i)) (loop1 pred? vec (+ i 1) len len-1)))))) (loop2+ (lambda (pred? vectors i len len-1) (or (= i len) (if (= i len-1) (apply pred? (vectors-ref vectors i)) (and (apply pred? (vectors-ref vectors i)) (loop2+ pred? vectors (+ i 1) len len-1))))))) (lambda (pred? vec . vectors) (let ((pred? (check-type procedure? pred? 'vector-every)) (vec (check-type vector? vec 'vector-every))) (if (null? vectors) (let ((len (vector-length vec))) (loop1 pred? vec 0 len (- len 1))) (let ((len (%smallest-length vectors (vector-length vec) vector-every))) (loop2+ pred? (cons vec vectors) 0 len (- len 1)))))))) ;;; -------------------- ;;; Mutators ;;; (VECTOR-SET! ) -> unspecified ;;; [R5RS] Assign the location at INDEX in VECTOR to VALUE. ; Already in R6RS ;(define vector-set! vector-set!) ;;; (VECTOR-SWAP! ) -> unspecified ;;; Swap the values in the locations at INDEX1 and INDEX2. (define (vector-swap! vec i j) (let ((vec (check-type vector? vec 'vector-swap!))) (let ((i (check-index vec i 'vector-swap!)) (j (check-index vec j 'vector-swap!))) (let ((x (vector-ref vec i))) (vector-set! vec i (vector-ref vec j)) (vector-set! vec j x))))) ;;; (VECTOR-FILL! [ ]) -> unspecified ;;; [R5RS+] Fill the locations in VECTOR between START, whose default ;;; is 0, and END, whose default is the length of VECTOR, with VALUE. ;;; ;;; This one can probably be made really fast natively. (define vector-fill! (let ((%vector-fill! rnrs:vector-fill!)) ; Take the native one, under ; the assumption that it's ; faster, so we can use it if ; there are no optional ; arguments. (lambda (vec value . maybe-start+end) (if (null? maybe-start+end) (%vector-fill! vec value) ;+++ (let-vector-start+end vector-fill! vec maybe-start+end (start end) (do ((i start (+ i 1))) ((= i end)) (vector-set! vec i value))))))) ;;; (VECTOR-COPY! [ ]) ;;; -> unspecified ;;; Copy the values in the locations in [SSTART,SEND) from SOURCE to ;;; to TARGET, starting at TSTART in TARGET. (define (vector-copy! target tstart source . maybe-sstart+send) (let* ((target (check-type vector? target 'vector-copy!)) (tstart (check-index target tstart 'vector-copy!))) (let-vector-start+end vector-copy! source maybe-sstart+send (sstart send) (let* ((source-length (vector-length source)) (lose (lambda (argument) (error "vector range out of bounds" argument `(while calling ,vector-copy!) `(target was ,target) `(target-length was ,(vector-length target)) `(tstart was ,tstart) `(source was ,source) `(source-length was ,source-length) `(sstart was ,sstart) `(send was ,send))))) (cond ((< sstart 0) (lose '(sstart < 0))) ((< send 0) (lose '(send < 0))) ((> sstart send) (lose '(sstart > send))) ((>= sstart source-length) (lose '(sstart >= source-length))) ((> send source-length) (lose '(send > source-length))) (else (%vector-copy! target tstart source sstart send))))))) ;;; (VECTOR-REVERSE-COPY! [ ]) (define (vector-reverse-copy! target tstart source . maybe-sstart+send) (let* ((target (check-type vector? target 'vector-reverse-copy!)) (tstart (check-index target tstart 'vector-reverse-copy!))) (let-vector-start+end vector-reverse-copy source maybe-sstart+send (sstart send) (let* ((source-length (vector-length source)) (lose (lambda (argument) (error "vector range out of bounds" argument `(while calling ,vector-reverse-copy!) `(target was ,target) `(target-length was ,(vector-length target)) `(tstart was ,tstart) `(source was ,source) `(source-length was ,source-length) `(sstart was ,sstart) `(send was ,send))))) (cond ((< sstart 0) (lose '(sstart < 0))) ((< send 0) (lose '(send < 0))) ((> sstart send) (lose '(sstart > send))) ((>= sstart source-length) (lose '(sstart >= source-length))) ((> send source-length) (lose '(send > source-length))) ((and (eq? target source) (= sstart tstart)) (%vector-reverse! target tstart send)) ((and (eq? target source) (or (between? sstart tstart send) (between? tstart sstart (+ tstart (- send sstart))))) (error "vector range for self-copying overlaps" vector-reverse-copy! `(vector was ,target) `(tstart was ,tstart) `(sstart was ,sstart) `(send was ,send))) (else (%vector-reverse-copy! target tstart source sstart send))))))) ;;; (VECTOR-REVERSE! [ ]) -> unspecified ;;; Destructively reverse the contents of the sequence of locations ;;; in VECTOR between START, whose default is 0, and END, whose ;;; default is the length of VECTOR. (define (vector-reverse! vec . start+end) (let-vector-start+end vector-reverse! vec start+end (start end) (%vector-reverse! vec start end))) ;;; -------------------- ;;; Conversion ;;; (VECTOR->LIST [ ]) -> list ;;; [R5RS+] Produce a list containing the elements in the locations ;;; between START, whose default is 0, and END, whose default is the ;;; length of VECTOR, from VECTOR. (define vector->list (let ((%vector->list rnrs:vector->list)) (lambda (vec . maybe-start+end) (if (null? maybe-start+end) ; Oughta use CASE-LAMBDA. (%vector->list vec) ;+++ (let-vector-start+end vector->list vec maybe-start+end (start end) ;(unfold (lambda (i) ; No SRFI 1. ; (< i start)) ; (lambda (i) (vector-ref vec i)) ; (lambda (i) (- i 1)) ; (- end 1)) (do ((i (- end 1) (- i 1)) (result '() (cons (vector-ref vec i) result))) ((< i start) result))))))) ;;; (REVERSE-VECTOR->LIST [ ]) -> list ;;; Produce a list containing the elements in the locations between ;;; START, whose default is 0, and END, whose default is the length ;;; of VECTOR, from VECTOR, in reverse order. (define (reverse-vector->list vec . maybe-start+end) (let-vector-start+end reverse-vector->list vec maybe-start+end (start end) ;(unfold (lambda (i) (= i end)) ; No SRFI 1. ; (lambda (i) (vector-ref vec i)) ; (lambda (i) (+ i 1)) ; start) (do ((i start (+ i 1)) (result '() (cons (vector-ref vec i) result))) ((= i end) result)))) ;;; (LIST->VECTOR [ []]) -> vector ;;; [R5RS+] Produce a vector containing the elements in LIST, which ;;; must be a proper list, between START, whose default is 0, & END, ;;; whose default is the length of LIST. It is suggested that if the ;;; length of LIST is known in advance, the START and END arguments ;;; be passed, so that LIST->VECTOR need not call LENGTH to determine ;;; the the length. ;;; ;;; This implementation diverges on circular lists, unless LENGTH fails ;;; and causes - to fail as well. Given a LENGTH* that computes the ;;; length of a list's cycle, this wouldn't diverge, and would work ;;; great for circular lists. (define list->vector (let ((%list->vector rnrs:list->vector)) (case-lambda [(lst) (%list->vector lst)] [(lst start) (list->vector lst start (length lst))] [(lst start end) ;; Checking the type of a proper list is expensive, so we do it ;; amortizedly, or let %LIST->VECTOR or LIST-TAIL do it. ;; We can't use LET-VECTOR-START+END, because we're using the ;; bounds of a _list_, not a vector. (let ((start (check-type nonneg-int? start 'list->vector)) (end (check-type nonneg-int? end 'list->vector))) ((lambda (f) (vector-unfold f (- end start) (list-tail lst start))) (lambda (index l) (cond ((null? l) (error "list was too short" `(list was ,lst) `(attempted end was ,end) `(while calling ,list->vector))) ((pair? l) (values (car l) (cdr l))) (else ;; Make this look as much like what CHECK-TYPE ;; would report as possible. (error "erroneous value" ;; We want SRFI 1's PROPER-LIST?, but it ;; would be a waste to link all of SRFI ;; 1 to this module for only the single ;; function PROPER-LIST?. (list list? lst) `(while calling ,list->vector)))))))]))) ;;; (REVERSE-LIST->VECTOR [ ]) -> vector ;;; Produce a vector containing the elements in LIST, which must be a ;;; proper list, between START, whose default is 0, and END, whose ;;; default is the length of LIST, in reverse order. It is suggested ;;; that if the length of LIST is known in advance, the START and END ;;; arguments be passed, so that REVERSE-LIST->VECTOR need not call ;;; LENGTH to determine the the length. ;;; ;;; This also diverges on circular lists unless, again, LENGTH returns ;;; something that makes - bork. (define reverse-list->vector (case-lambda [(lst) (reverse-list->vector lst 0 (length lst))] [(lst start) (reverse-list->vector lst start (length lst))] [(lst start end) (let ((start (check-type nonneg-int? start 'reverse-list->vector)) (end (check-type nonneg-int? end 'reverse-list->vector))) ((lambda (f) (vector-unfold-right f (- end start) (list-tail lst start))) (lambda (index l) (cond ((null? l) (error "list too short" `(list was ,lst) `(attempted end was ,end) `(while calling ,reverse-list->vector))) ((pair? l) (values (car l) (cdr l))) (else (error "erroneous value" (list list? lst) `(while calling ,reverse-list->vector)))))))]))