;;;; bitwise-core, core bitwise operations ;;; Copyright (C) 1991, 1993, 2001, 2003, 2005 Aubrey Jaffer ;;; This implementation of the seven core functions required by SRFI 33 ;;; (bitwise-not, bitwise-and, bitwise-ior, bitwise-xor, arithmetic-shift, ;;; bit-count, integer-length) is drawn from the SRFI 60 implementation. ;;; Here is Shivers's comment on this code in SRFI 33: ;;; The [following] implementations of these functions use [only] R4RS ;;; arithmetic, so a simple-minded implementation again doesn't need to ;;; do much to support them -- however, [these] general implementations ;;; are terribly inefficient relative to native support and should *not* ;;; be used except in case of dire emergency. (It's quite clever code, ;;; nonetheless, to provide the semantics with such little support.) ;Permission to copy this software, to modify it, to redistribute it, ;to distribute modified versions, and to use it for any purpose is ;granted, subject to the following restrictions and understandings. ; ;1. Any copy made of this software must include this copyright notice ;in full. ; ;2. I have made no warranty or representation that the operation of ;this software will be error-free, and I am under no obligation to ;provide any services, by way of maintenance, update, or otherwise. ; ;3. In conjunction with products arising from the use of this ;material, there shall be no use of my name in any advertising, ;promotional, or sales literature without prior written consent in ;each case. (define (bitwise-not n) (- -1 n)) (define logical:boole-xor '#(#(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) #(1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14) #(2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13) #(3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12) #(4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11) #(5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10) #(6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9) #(7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8) #(8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7) #(9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6) #(10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5) #(11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4) #(12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3) #(13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2) #(14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1) #(15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0))) (define logical:boole-and '#(#(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) #(0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1) #(0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2) #(0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3) #(0 0 0 0 4 4 4 4 0 0 0 0 4 4 4 4) #(0 1 0 1 4 5 4 5 0 1 0 1 4 5 4 5) #(0 0 2 2 4 4 6 6 0 0 2 2 4 4 6 6) #(0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7) #(0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8) #(0 1 0 1 0 1 0 1 8 9 8 9 8 9 8 9) #(0 0 2 2 0 0 2 2 8 8 10 10 8 8 10 10) #(0 1 2 3 0 1 2 3 8 9 10 11 8 9 10 11) #(0 0 0 0 4 4 4 4 8 8 8 8 12 12 12 12) #(0 1 0 1 4 5 4 5 8 9 8 9 12 13 12 13) #(0 0 2 2 4 4 6 6 8 8 10 10 12 12 14 14) #(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15))) (define (logical:ash-4 x) (if (negative? x) (+ -1 (quotient (+ 1 x) 16)) (quotient x 16))) (define (logical:reduce op4 ident) (lambda args (do ((res ident (op4 res (car rgs) 1 0)) (rgs args (cdr rgs))) ((null? rgs) res)))) (define bitwise-and (letrec ((lgand (lambda (n2 n1 scl acc) (cond ((= n1 n2) (+ acc (* scl n1))) ((zero? n2) acc) ((zero? n1) acc) (else (lgand (logical:ash-4 n2) (logical:ash-4 n1) (* 16 scl) (+ (* (vector-ref (vector-ref logical:boole-and (modulo n1 16)) (modulo n2 16)) scl) acc))))))) (logical:reduce lgand -1))) (define bitwise-ior (letrec ((lgior (lambda (n2 n1 scl acc) (cond ((= n1 n2) (+ acc (* scl n1))) ((zero? n2) (+ acc (* scl n1))) ((zero? n1) (+ acc (* scl n2))) (else (lgior (logical:ash-4 n2) (logical:ash-4 n1) (* 16 scl) (+ (* (- 15 (vector-ref (vector-ref logical:boole-and (- 15 (modulo n1 16))) (- 15 (modulo n2 16)))) scl) acc))))))) (logical:reduce lgior 0))) (define bitwise-xor (letrec ((lgxor (lambda (n2 n1 scl acc) (cond ((= n1 n2) acc) ((zero? n2) (+ acc (* scl n1))) ((zero? n1) (+ acc (* scl n2))) (else (lgxor (logical:ash-4 n2) (logical:ash-4 n1) (* 16 scl) (+ (* (vector-ref (vector-ref logical:boole-xor (modulo n1 16)) (modulo n2 16)) scl) acc))))))) (logical:reduce lgxor 0))) (define (arithmetic-shift n count) (if (negative? count) (let ((k (expt 2 (- count)))) (if (negative? n) (+ -1 (quotient (+ 1 n) k)) (quotient n k))) (* (expt 2 count) n))) ;@ (define integer-length (letrec ((intlen (lambda (n tot) (case n ((0 -1) (+ 0 tot)) ((1 -2) (+ 1 tot)) ((2 3 -3 -4) (+ 2 tot)) ((4 5 6 7 -5 -6 -7 -8) (+ 3 tot)) (else (intlen (logical:ash-4 n) (+ 4 tot))))))) (lambda (n) (intlen n 0)))) (define bit-count (letrec ((logcnt (lambda (n tot) (if (zero? n) tot (logcnt (quotient n 16) (+ (vector-ref '#(0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4) (modulo n 16)) tot)))))) (lambda (n) (cond ((negative? n) (logcnt (bitwise-not n) 0)) ((positive? n) (logcnt n 0)) (else 0)))))