[![Crates.io](https://img.shields.io/crates/v/roaring-landmask.svg)](https://crates.io/crates/roaring-landmask) [![Documentation](https://docs.rs/roaring-landmask/badge.svg)](https://docs.rs/roaring-landmask/) [![PyPI](https://img.shields.io/pypi/v/roaring-landmask.svg?style=flat-square)](https://pypi.org/project/roaring-landmask/) [![Actions Status](https://github.com/gauteh/roaring-landmask/workflows/Build%20wheels/badge.svg)](https://github.com/gauteh/roaring-landmask/actions) # The Roaring Landmask Have you ever needed to know whether you are in the ocean or on land? And you need to know it fast? And you need to know it without using too much memory or too much disk? Then try the _Roaring Landmask_! The _roaring landmask_ is a Rust + Python package for quickly determining whether a point given in latitude and longitude is on land or not. A landmask is stored in a tree of [Roaring Bitmaps](https://roaringbitmap.org/). Points close to the shore might still be in the ocean, so a positive value is then checked against the vector shapes of the coastline. ([source](https://github.com/gauteh/roaring-landmask/blob/main/src/devel/make_demo_plot.py)) The landmask is generated from the [GSHHG shoreline database](https://www.soest.hawaii.edu/pwessel/gshhg/) (Wessel, P., and W. H. F. Smith, A Global Self-consistent, Hierarchical, High-resolution Shoreline Database, J. Geophys. Res., 101, 8741-8743, 1996) and the [OpenStreetMap](https://www.openstreetmap.org/) ([© OpenStreetMap](http://openstreetmap.org/copyright)). An alternative is the [opendrift-landmask-data](https://github.com/OpenDrift/opendrift-landmask-data), which is slightly faster, is pure Python, but requires more memory and disk space (memory-mapped 3.7Gb). ## Performance Microbenchmarks: ``` test tests::test_contains_in_ocean ... bench: 24 ns/iter (+/- 0) test tests::test_contains_on_land ... bench: 3,795 ns/iter (+/- 214) ``` Many points, through Python: ``` ------------------------------------------------------------------------------------------------------ benchmark: 5 tests ----------------------------------------------------------------------------------------------------- Name (time in us) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- test_landmask_many_par 34,335.6220 (>1000.0) 39,922.9660 (>1000.0) 36,167.6438 (>1000.0) 1,602.6359 (>1000.0) 35,658.2270 (>1000.0) 1,722.6990 (>1000.0) 9;1 27.6490 (0.00) 30 1 test_landmask_many 130,760.1480 (>1000.0) 131,155.3400 (>1000.0) 130,863.7110 (>1000.0) 137.1064 (598.03) 130,809.7410 (>1000.0) 135.3770 (>1000.0) 1;1 7.6415 (0.00) 8 1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ``` The parallel version is significantly faster, while the sequential version is slightly slower than the equivalent benchmark in `opendrift-landmask-data`, which uses about `120 ms`. ## Usage from Python ```python from roaring_landmask import RoaringLandmask l = RoaringLandmask.new() x = np.arange(-180, 180, .5) y = np.arange(-90, 90, .5) xx, yy = np.meshgrid(x,y) print ("points:", len(xx.ravel())) on_land = l.contains_many(xx.ravel(), yy.ravel()) ``` ## Building & installing Pre-built wheels are available on PyPI: 1) `pip install roaring-landmask` To build from source, you can use pip: 1) `pip install .` or maturin: 1) Install [maturin](https://github.com/PyO3/maturin). 2) Build and install ``` maturin build --release pip install target/wheels/... # choose your whl ```