/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans https://bulletphysics.org This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "btOverlappingPairCache.h" #include "../CollisionDispatch/btCollisionDispatcher.h" #include "btCollisionAlgorithm.h" #include "../../LinearMath/btAabbUtil2.h" #include btHashedOverlappingPairCache::btHashedOverlappingPairCache() : m_overlapFilterCallback(0), m_ghostPairCallback(0) { int initialAllocatedSize = 2; m_overlappingPairArray.reserve(initialAllocatedSize); growTables(); } btHashedOverlappingPairCache::~btHashedOverlappingPairCache() { } void btHashedOverlappingPairCache::cleanOverlappingPair(btBroadphasePair& pair, btCollisionDispatcher* dispatcher) { if (pair.m_algorithm && dispatcher) { { pair.m_algorithm->~btCollisionAlgorithm(); dispatcher->freeCollisionAlgorithm(pair.m_algorithm); pair.m_algorithm = 0; } } } void btHashedOverlappingPairCache::cleanProxyFromPairs(btBroadphaseProxy* proxy, btCollisionDispatcher* dispatcher) { class CleanPairCallback : public btOverlapCallback { btBroadphaseProxy* m_cleanProxy; btOverlappingPairCache* m_pairCache; btCollisionDispatcher* m_dispatcher; public: CleanPairCallback(btBroadphaseProxy* cleanProxy, btOverlappingPairCache* pairCache, btCollisionDispatcher* dispatcher) : m_cleanProxy(cleanProxy), m_pairCache(pairCache), m_dispatcher(dispatcher) { } virtual bool processOverlap(btBroadphasePair& pair) { if ((pair.m_pProxy0 == m_cleanProxy) || (pair.m_pProxy1 == m_cleanProxy)) { m_pairCache->cleanOverlappingPair(pair, m_dispatcher); } return false; } }; CleanPairCallback cleanPairs(proxy, this, dispatcher); processAllOverlappingPairs(&cleanPairs, dispatcher); } void btHashedOverlappingPairCache::removeOverlappingPairsContainingProxy(btBroadphaseProxy* proxy, btCollisionDispatcher* dispatcher) { class RemovePairCallback : public btOverlapCallback { btBroadphaseProxy* m_obsoleteProxy; public: RemovePairCallback(btBroadphaseProxy* obsoleteProxy) : m_obsoleteProxy(obsoleteProxy) { } virtual bool processOverlap(btBroadphasePair& pair) { return ((pair.m_pProxy0 == m_obsoleteProxy) || (pair.m_pProxy1 == m_obsoleteProxy)); } }; RemovePairCallback removeCallback(proxy); processAllOverlappingPairs(&removeCallback, dispatcher); } btBroadphasePair* btHashedOverlappingPairCache::findPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1) { if (proxy0->m_uniqueId > proxy1->m_uniqueId) btSwap(proxy0, proxy1); int proxyId1 = proxy0->getUid(); int proxyId2 = proxy1->getUid(); /*if (proxyId1 > proxyId2) btSwap(proxyId1, proxyId2);*/ int hash = static_cast(getHash(static_cast(proxyId1), static_cast(proxyId2)) & (m_overlappingPairArray.capacity() - 1)); if (hash >= m_hashTable.size()) { return NULL; } int index = m_hashTable[hash]; while (index != BT_NULL_PAIR && equalsPair(m_overlappingPairArray[index], proxyId1, proxyId2) == false) { index = m_next[index]; } if (index == BT_NULL_PAIR) { return NULL; } btAssert(index < m_overlappingPairArray.size()); return &m_overlappingPairArray[index]; } //#include void btHashedOverlappingPairCache::growTables() { int newCapacity = m_overlappingPairArray.capacity(); if (m_hashTable.size() < newCapacity) { //grow hashtable and next table int curHashtableSize = m_hashTable.size(); m_hashTable.resize(newCapacity); m_next.resize(newCapacity); int i; for (i = 0; i < newCapacity; ++i) { m_hashTable[i] = BT_NULL_PAIR; } for (i = 0; i < newCapacity; ++i) { m_next[i] = BT_NULL_PAIR; } for (i = 0; i < curHashtableSize; i++) { const btBroadphasePair& pair = m_overlappingPairArray[i]; int proxyId1 = pair.m_pProxy0->getUid(); int proxyId2 = pair.m_pProxy1->getUid(); /*if (proxyId1 > proxyId2) btSwap(proxyId1, proxyId2);*/ int hashValue = static_cast(getHash(static_cast(proxyId1), static_cast(proxyId2)) & (m_overlappingPairArray.capacity() - 1)); // New hash value with new mask m_next[i] = m_hashTable[hashValue]; m_hashTable[hashValue] = i; } } } btBroadphasePair* btHashedOverlappingPairCache::internalAddPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1) { if (proxy0->m_uniqueId > proxy1->m_uniqueId) btSwap(proxy0, proxy1); int proxyId1 = proxy0->getUid(); int proxyId2 = proxy1->getUid(); /*if (proxyId1 > proxyId2) btSwap(proxyId1, proxyId2);*/ int hash = static_cast(getHash(static_cast(proxyId1), static_cast(proxyId2)) & (m_overlappingPairArray.capacity() - 1)); // New hash value with new mask btBroadphasePair* pair = internalFindPair(proxy0, proxy1, hash); if (pair != NULL) { return pair; } /*for(int i=0;i%u\r\n",proxyId1,proxyId2); internalFindPair(proxy0, proxy1, hash); } }*/ int count = m_overlappingPairArray.size(); int oldCapacity = m_overlappingPairArray.capacity(); void* mem = &m_overlappingPairArray.expandNonInitializing(); //this is where we add an actual pair, so also call the 'ghost' if (m_ghostPairCallback) m_ghostPairCallback->addOverlappingPair(proxy0, proxy1); int newCapacity = m_overlappingPairArray.capacity(); if (oldCapacity < newCapacity) { growTables(); //hash with new capacity hash = static_cast(getHash(static_cast(proxyId1), static_cast(proxyId2)) & (m_overlappingPairArray.capacity() - 1)); } pair = new (mem) btBroadphasePair(*proxy0, *proxy1); // pair->m_pProxy0 = proxy0; // pair->m_pProxy1 = proxy1; pair->m_algorithm = 0; pair->m_internalTmpValue = 0; m_next[count] = m_hashTable[hash]; m_hashTable[hash] = count; return pair; } void* btHashedOverlappingPairCache::removeOverlappingPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1, btCollisionDispatcher* dispatcher) { if (proxy0->m_uniqueId > proxy1->m_uniqueId) btSwap(proxy0, proxy1); int proxyId1 = proxy0->getUid(); int proxyId2 = proxy1->getUid(); /*if (proxyId1 > proxyId2) btSwap(proxyId1, proxyId2);*/ int hash = static_cast(getHash(static_cast(proxyId1), static_cast(proxyId2)) & (m_overlappingPairArray.capacity() - 1)); btBroadphasePair* pair = internalFindPair(proxy0, proxy1, hash); if (pair == NULL) { return 0; } cleanOverlappingPair(*pair, dispatcher); void* userData = pair->m_internalInfo1; btAssert(pair->m_pProxy0->getUid() == proxyId1); btAssert(pair->m_pProxy1->getUid() == proxyId2); int pairIndex = int(pair - &m_overlappingPairArray[0]); btAssert(pairIndex < m_overlappingPairArray.size()); // Remove the pair from the hash table. int index = m_hashTable[hash]; btAssert(index != BT_NULL_PAIR); int previous = BT_NULL_PAIR; while (index != pairIndex) { previous = index; index = m_next[index]; } if (previous != BT_NULL_PAIR) { btAssert(m_next[previous] == pairIndex); m_next[previous] = m_next[pairIndex]; } else { m_hashTable[hash] = m_next[pairIndex]; } // We now move the last pair into spot of the // pair being removed. We need to fix the hash // table indices to support the move. int lastPairIndex = m_overlappingPairArray.size() - 1; if (m_ghostPairCallback) m_ghostPairCallback->removeOverlappingPair(proxy0, proxy1, dispatcher); // If the removed pair is the last pair, we are done. if (lastPairIndex == pairIndex) { m_overlappingPairArray.pop_back(); return userData; } // Remove the last pair from the hash table. const btBroadphasePair* last = &m_overlappingPairArray[lastPairIndex]; /* missing swap here too, Nat. */ int lastHash = static_cast(getHash(static_cast(last->m_pProxy0->getUid()), static_cast(last->m_pProxy1->getUid())) & (m_overlappingPairArray.capacity() - 1)); index = m_hashTable[lastHash]; btAssert(index != BT_NULL_PAIR); previous = BT_NULL_PAIR; while (index != lastPairIndex) { previous = index; index = m_next[index]; } if (previous != BT_NULL_PAIR) { btAssert(m_next[previous] == lastPairIndex); m_next[previous] = m_next[lastPairIndex]; } else { m_hashTable[lastHash] = m_next[lastPairIndex]; } // Copy the last pair into the remove pair's spot. m_overlappingPairArray[pairIndex] = m_overlappingPairArray[lastPairIndex]; // Insert the last pair into the hash table m_next[pairIndex] = m_hashTable[lastHash]; m_hashTable[lastHash] = pairIndex; m_overlappingPairArray.pop_back(); return userData; } //#include #include "../../LinearMath/btQuickprof.h" void btHashedOverlappingPairCache::processAllOverlappingPairs(btOverlapCallback* callback, btCollisionDispatcher* dispatcher) { BT_PROFILE("btHashedOverlappingPairCache::processAllOverlappingPairs"); int i; // printf("m_overlappingPairArray.size()=%d\n",m_overlappingPairArray.size()); for (i = 0; i < m_overlappingPairArray.size();) { btBroadphasePair* pair = &m_overlappingPairArray[i]; if (callback->processOverlap(*pair)) { removeOverlappingPair(pair->m_pProxy0, pair->m_pProxy1, dispatcher); } else { i++; } } } struct MyPairIndex { int m_orgIndex; int m_uidA0; int m_uidA1; }; class MyPairIndeSortPredicate { public: bool operator()(const MyPairIndex& a, const MyPairIndex& b) const { const int uidA0 = a.m_uidA0; const int uidB0 = b.m_uidA0; const int uidA1 = a.m_uidA1; const int uidB1 = b.m_uidA1; return uidA0 > uidB0 || (uidA0 == uidB0 && uidA1 > uidB1); } }; void btHashedOverlappingPairCache::processAllOverlappingPairs(btOverlapCallback* callback, btCollisionDispatcher* dispatcher, const struct btDispatcherInfo& dispatchInfo) { if (dispatchInfo.m_deterministicOverlappingPairs) { btBroadphasePairArray& pa = getOverlappingPairArray(); btAlignedObjectArray indices; { BT_PROFILE("sortOverlappingPairs"); indices.resize(pa.size()); for (int i = 0; i < indices.size(); i++) { const btBroadphasePair& p = pa[i]; const int uidA0 = p.m_pProxy0 ? p.m_pProxy0->m_uniqueId : -1; const int uidA1 = p.m_pProxy1 ? p.m_pProxy1->m_uniqueId : -1; indices[i].m_uidA0 = uidA0; indices[i].m_uidA1 = uidA1; indices[i].m_orgIndex = i; } indices.quickSort(MyPairIndeSortPredicate()); } { BT_PROFILE("btHashedOverlappingPairCache::processAllOverlappingPairs"); int i; for (i = 0; i < indices.size();) { btBroadphasePair* pair = &pa[indices[i].m_orgIndex]; if (callback->processOverlap(*pair)) { removeOverlappingPair(pair->m_pProxy0, pair->m_pProxy1, dispatcher); } else { i++; } } } } else { processAllOverlappingPairs(callback, dispatcher); } } void btHashedOverlappingPairCache::sortOverlappingPairs(btCollisionDispatcher* dispatcher) { ///need to keep hashmap in sync with pair address, so rebuild all btBroadphasePairArray tmpPairs; int i; for (i = 0; i < m_overlappingPairArray.size(); i++) { tmpPairs.push_back(m_overlappingPairArray[i]); } for (i = 0; i < tmpPairs.size(); i++) { removeOverlappingPair(tmpPairs[i].m_pProxy0, tmpPairs[i].m_pProxy1, dispatcher); } for (i = 0; i < m_next.size(); i++) { m_next[i] = BT_NULL_PAIR; } tmpPairs.quickSort(btBroadphasePairSortPredicate()); for (i = 0; i < tmpPairs.size(); i++) { addOverlappingPair(tmpPairs[i].m_pProxy0, tmpPairs[i].m_pProxy1); } } void* btSortedOverlappingPairCache::removeOverlappingPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1, btCollisionDispatcher* dispatcher) { if (!hasDeferredRemoval()) { btBroadphasePair findPair(*proxy0, *proxy1); int findIndex = m_overlappingPairArray.findLinearSearch(findPair); if (findIndex < m_overlappingPairArray.size()) { btBroadphasePair& pair = m_overlappingPairArray[findIndex]; void* userData = pair.m_internalInfo1; cleanOverlappingPair(pair, dispatcher); if (m_ghostPairCallback) m_ghostPairCallback->removeOverlappingPair(proxy0, proxy1, dispatcher); m_overlappingPairArray.swap(findIndex, m_overlappingPairArray.capacity() - 1); m_overlappingPairArray.pop_back(); return userData; } } return 0; } btBroadphasePair* btSortedOverlappingPairCache::addOverlappingPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1) { //don't add overlap with own btAssert(proxy0 != proxy1); if (!needsBroadphaseCollision(proxy0, proxy1)) return 0; void* mem = &m_overlappingPairArray.expandNonInitializing(); btBroadphasePair* pair = new (mem) btBroadphasePair(*proxy0, *proxy1); if (m_ghostPairCallback) m_ghostPairCallback->addOverlappingPair(proxy0, proxy1); return pair; } ///this findPair becomes really slow. Either sort the list to speedup the query, or ///use a different solution. It is mainly used for Removing overlapping pairs. Removal could be delayed. ///we could keep a linked list in each proxy, and store pair in one of the proxies (with lowest memory address) ///Also we can use a 2D bitmap, which can be useful for a future GPU implementation btBroadphasePair* btSortedOverlappingPairCache::findPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1) { if (!needsBroadphaseCollision(proxy0, proxy1)) return 0; btBroadphasePair tmpPair(*proxy0, *proxy1); int findIndex = m_overlappingPairArray.findLinearSearch(tmpPair); if (findIndex < m_overlappingPairArray.size()) { //btAssert(it != m_overlappingPairSet.end()); btBroadphasePair* pair = &m_overlappingPairArray[findIndex]; return pair; } return 0; } //#include void btSortedOverlappingPairCache::processAllOverlappingPairs(btOverlapCallback* callback, btCollisionDispatcher* dispatcher) { int i; for (i = 0; i < m_overlappingPairArray.size();) { btBroadphasePair* pair = &m_overlappingPairArray[i]; if (callback->processOverlap(*pair)) { cleanOverlappingPair(*pair, dispatcher); pair->m_pProxy0 = 0; pair->m_pProxy1 = 0; m_overlappingPairArray.swap(i, m_overlappingPairArray.size() - 1); m_overlappingPairArray.pop_back(); } else { i++; } } } btSortedOverlappingPairCache::btSortedOverlappingPairCache() : m_blockedForChanges(false), m_hasDeferredRemoval(true), m_overlapFilterCallback(0), m_ghostPairCallback(0) { int initialAllocatedSize = 2; m_overlappingPairArray.reserve(initialAllocatedSize); } btSortedOverlappingPairCache::~btSortedOverlappingPairCache() { } void btSortedOverlappingPairCache::cleanOverlappingPair(btBroadphasePair& pair, btCollisionDispatcher* dispatcher) { if (pair.m_algorithm) { { pair.m_algorithm->~btCollisionAlgorithm(); dispatcher->freeCollisionAlgorithm(pair.m_algorithm); pair.m_algorithm = 0; } } } void btSortedOverlappingPairCache::cleanProxyFromPairs(btBroadphaseProxy* proxy, btCollisionDispatcher* dispatcher) { class CleanPairCallback : public btOverlapCallback { btBroadphaseProxy* m_cleanProxy; btOverlappingPairCache* m_pairCache; btCollisionDispatcher* m_dispatcher; public: CleanPairCallback(btBroadphaseProxy* cleanProxy, btOverlappingPairCache* pairCache, btCollisionDispatcher* dispatcher) : m_cleanProxy(cleanProxy), m_pairCache(pairCache), m_dispatcher(dispatcher) { } virtual bool processOverlap(btBroadphasePair& pair) { if ((pair.m_pProxy0 == m_cleanProxy) || (pair.m_pProxy1 == m_cleanProxy)) { m_pairCache->cleanOverlappingPair(pair, m_dispatcher); } return false; } }; CleanPairCallback cleanPairs(proxy, this, dispatcher); processAllOverlappingPairs(&cleanPairs, dispatcher); } void btSortedOverlappingPairCache::removeOverlappingPairsContainingProxy(btBroadphaseProxy* proxy, btCollisionDispatcher* dispatcher) { class RemovePairCallback : public btOverlapCallback { btBroadphaseProxy* m_obsoleteProxy; public: RemovePairCallback(btBroadphaseProxy* obsoleteProxy) : m_obsoleteProxy(obsoleteProxy) { } virtual bool processOverlap(btBroadphasePair& pair) { return ((pair.m_pProxy0 == m_obsoleteProxy) || (pair.m_pProxy1 == m_obsoleteProxy)); } }; RemovePairCallback removeCallback(proxy); processAllOverlappingPairs(&removeCallback, dispatcher); } void btSortedOverlappingPairCache::sortOverlappingPairs(btCollisionDispatcher* dispatcher) { //should already be sorted }