/* adler32.c -- compute the Adler-32 checksum of a data stream * Copyright (C) 1995-2011, 2016 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #include "zbuild.h" #include "zutil.h" #include "functable.h" #include "adler32_p.h" uint32_t adler32_c(uint32_t adler, const unsigned char *buf, size_t len); static uint32_t adler32_combine_(uint32_t adler1, uint32_t adler2, z_off64_t len2); #define DO1(buf, i) {adler += (buf)[i]; sum2 += adler;} #define DO2(buf, i) DO1(buf, i); DO1(buf, i+1); #define DO4(buf, i) DO2(buf, i); DO2(buf, i+2); #define DO8(buf, i) DO4(buf, i); DO4(buf, i+4); #define DO16(buf) DO8(buf, 0); DO8(buf, 8); /* ========================================================================= */ uint32_t adler32_c(uint32_t adler, const unsigned char *buf, size_t len) { uint32_t sum2; unsigned n; /* split Adler-32 into component sums */ sum2 = (adler >> 16) & 0xffff; adler &= 0xffff; /* in case user likes doing a byte at a time, keep it fast */ if (len == 1) return adler32_len_1(adler, buf, sum2); /* initial Adler-32 value (deferred check for len == 1 speed) */ if (buf == NULL) return 1L; /* in case short lengths are provided, keep it somewhat fast */ if (len < 16) return adler32_len_16(adler, buf, len, sum2); /* do length NMAX blocks -- requires just one modulo operation */ while (len >= NMAX) { len -= NMAX; #ifdef UNROLL_MORE n = NMAX / 16; /* NMAX is divisible by 16 */ #else n = NMAX / 8; /* NMAX is divisible by 8 */ #endif do { #ifdef UNROLL_MORE DO16(buf); /* 16 sums unrolled */ buf += 16; #else DO8(buf, 0); /* 8 sums unrolled */ buf += 8; #endif } while (--n); MOD(adler); MOD(sum2); } /* do remaining bytes (less than NMAX, still just one modulo) */ if (len) { /* avoid modulos if none remaining */ #ifdef UNROLL_MORE while (len >= 16) { len -= 16; DO16(buf); buf += 16; #else while (len >= 8) { len -= 8; DO8(buf, 0); buf += 8; #endif } while (len) { --len; adler += *buf++; sum2 += adler; } MOD(adler); MOD(sum2); } /* return recombined sums */ return adler | (sum2 << 16); } uint32_t ZEXPORT PREFIX(adler32_z)(uint32_t adler, const unsigned char *buf, size_t len) { return functable.adler32(adler, buf, len); } /* ========================================================================= */ uint32_t ZEXPORT PREFIX(adler32)(uint32_t adler, const unsigned char *buf, uint32_t len) { return functable.adler32(adler, buf, len); } /* ========================================================================= */ static uint32_t adler32_combine_(uint32_t adler1, uint32_t adler2, z_off64_t len2) { uint32_t sum1; uint32_t sum2; unsigned rem; /* for negative len, return invalid adler32 as a clue for debugging */ if (len2 < 0) return 0xffffffff; /* the derivation of this formula is left as an exercise for the reader */ MOD63(len2); /* assumes len2 >= 0 */ rem = (unsigned)len2; sum1 = adler1 & 0xffff; sum2 = rem * sum1; MOD(sum2); sum1 += (adler2 & 0xffff) + BASE - 1; sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; if (sum1 >= BASE) sum1 -= BASE; if (sum1 >= BASE) sum1 -= BASE; if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1); if (sum2 >= BASE) sum2 -= BASE; return sum1 | (sum2 << 16); } /* ========================================================================= */ uint32_t ZEXPORT PREFIX(adler32_combine)(uint32_t adler1, uint32_t adler2, z_off_t len2) { return adler32_combine_(adler1, adler2, len2); } uint32_t ZEXPORT PREFIX(adler32_combine64)(uint32_t adler1, uint32_t adler2, z_off64_t len2) { return adler32_combine_(adler1, adler2, len2); }