//! # Pico GPIO In/Out Example //! //! Toggles the LED based on GPIO input. //! //! This will control an LED on GP25 based on a button hooked up to GP15. The //! button should cause the line to be grounded, as the input pin is pulled high //! internally by this example. When the button is pressed, the LED will turn //! off. //! //! See the `Cargo.toml` file for Copyright and license details. #![no_std] #![no_main] // The macro for our start-up function use rp_pico::entry; // GPIO traits use embedded_hal::digital::{InputPin, OutputPin}; // Ensure we halt the program on panic (if we don't mention this crate it won't // be linked) use panic_halt as _; // A shorter alias for the Peripheral Access Crate, which provides low-level // register access use rp_pico::hal::pac; // A shorter alias for the Hardware Abstraction Layer, which provides // higher-level drivers. use rp_pico::hal; /// Entry point to our bare-metal application. /// /// The `#[entry]` macro ensures the Cortex-M start-up code calls this function /// as soon as all global variables are initialised. /// /// The function configures the RP2040 peripherals, then just reads the button /// and sets the LED appropriately. #[entry] fn main() -> ! { // Grab our singleton objects let mut pac = pac::Peripherals::take().unwrap(); // Note - we don't do any clock set-up in this example. The RP2040 will run // at it's default clock speed. // The single-cycle I/O block controls our GPIO pins let sio = hal::Sio::new(pac.SIO); // Set the pins up according to their function on this particular board let pins = rp_pico::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); // Our LED output let mut led_pin = pins.led.into_push_pull_output(); // Our button input let mut button_pin = pins.gpio15.into_pull_up_input(); // Run forever, setting the LED according to the button loop { if button_pin.is_low().unwrap() { led_pin.set_high().unwrap(); } else { led_pin.set_low().unwrap(); } } } // End of file