//! # ADC Example //! //! This application demonstrates how to read ADC samples from the temperature //! sensor and pin and output them to the UART on pins 1 and 2 at 9600 baud. //! //! It may need to be adapted to your particular board layout and/or pin assignment. //! //! See the `Cargo.toml` file for Copyright and license details. #![no_std] #![no_main] // Ensure we halt the program on panic (if we don't mention this crate it won't // be linked) use panic_halt as _; // Alias for our HAL crate use rp2040_hal as hal; // Some traits we need use core::fmt::Write; // Embedded HAL 1.0.0 doesn't have an ADC trait, so use the one from 0.2 use embedded_hal_0_2::adc::OneShot; use hal::fugit::RateExtU32; use rp2040_hal::Clock; // UART related types use hal::uart::{DataBits, StopBits, UartConfig}; // A shorter alias for the Peripheral Access Crate, which provides low-level // register access use hal::pac; /// The linker will place this boot block at the start of our program image. We /// need this to help the ROM bootloader get our code up and running. /// Note: This boot block is not necessary when using a rp-hal based BSP /// as the BSPs already perform this step. #[link_section = ".boot2"] #[used] pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H; /// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust /// if your board has a different frequency const XTAL_FREQ_HZ: u32 = 12_000_000u32; /// Entry point to our bare-metal application. /// /// The `#[rp2040_hal::entry]` macro ensures the Cortex-M start-up code calls this function /// as soon as all global variables and the spinlock are initialised. /// /// The function configures the RP2040 peripherals, then prints the temperature /// in an infinite loop. #[rp2040_hal::entry] fn main() -> ! { // Grab our singleton objects let mut pac = pac::Peripherals::take().unwrap(); let core = pac::CorePeripherals::take().unwrap(); // Set up the watchdog driver - needed by the clock setup code let mut watchdog = hal::Watchdog::new(pac.WATCHDOG); // Configure the clocks let clocks = hal::clocks::init_clocks_and_plls( XTAL_FREQ_HZ, pac.XOSC, pac.CLOCKS, pac.PLL_SYS, pac.PLL_USB, &mut pac.RESETS, &mut watchdog, ) .unwrap(); // The delay object lets us wait for specified amounts of time (in // milliseconds) let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().to_Hz()); // The single-cycle I/O block controls our GPIO pins let sio = hal::Sio::new(pac.SIO); // Set the pins to their default state let pins = hal::gpio::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); // UART TX (characters sent from pico) on pin 1 (GPIO0) and RX (on pin 2 (GPIO1) let uart_pins = ( pins.gpio0.into_function::(), pins.gpio1.into_function::(), ); // Create a UART driver let mut uart = hal::uart::UartPeripheral::new(pac.UART0, uart_pins, &mut pac.RESETS) .enable( UartConfig::new(9600.Hz(), DataBits::Eight, None, StopBits::One), clocks.peripheral_clock.freq(), ) .unwrap(); // Write to the UART uart.write_full_blocking(b"ADC example\r\n"); // Enable ADC let mut adc = hal::Adc::new(pac.ADC, &mut pac.RESETS); // Enable the temperature sense channel let mut temperature_sensor = adc.take_temp_sensor().unwrap(); // Configure GPIO26 as an ADC input let mut adc_pin_0 = hal::adc::AdcPin::new(pins.gpio26).unwrap(); loop { // Read the raw ADC counts from the temperature sensor channel. let temp_sens_adc_counts: u16 = adc.read(&mut temperature_sensor).unwrap(); let pin_adc_counts: u16 = adc.read(&mut adc_pin_0).unwrap(); writeln!( uart, "ADC readings: Temperature: {temp_sens_adc_counts:02} Pin: {pin_adc_counts:02}\r\n" ) .unwrap(); delay.delay_ms(1000); } } // End of file