//! # ADC FIFO DMA Example //! //! This application demonstrates how to read ADC samples in free-running mode, //! and reading them from the FIFO by using a DMA transfer. //! //! It may need to be adapted to your particular board layout and/or pin assignment. //! //! See the `Cargo.toml` file for Copyright and license details. #![no_std] #![no_main] // Ensure we halt the program on panic (if we don't mention this crate it won't // be linked) use panic_halt as _; // Alias for our HAL crate use rp2040_hal as hal; // Some traits we need use core::fmt::Write; use cortex_m::singleton; use fugit::RateExtU32; use hal::dma::{single_buffer, DMAExt}; use rp2040_hal::Clock; // UART related types use hal::uart::{DataBits, StopBits, UartConfig}; // A shorter alias for the Peripheral Access Crate, which provides low-level // register access use hal::pac; /// The linker will place this boot block at the start of our program image. We /// need this to help the ROM bootloader get our code up and running. /// Note: This boot block is not necessary when using a rp-hal based BSP /// as the BSPs already perform this step. #[link_section = ".boot2"] #[used] pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H; /// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust /// if your board has a different frequency const XTAL_FREQ_HZ: u32 = 12_000_000u32; /// Entry point to our bare-metal application. /// /// The `#[rp2040_hal::entry]` macro ensures the Cortex-M start-up code calls this function /// as soon as all global variables and the spinlock are initialised. /// /// The function configures the RP2040 peripherals, then prints the temperature /// in an infinite loop. #[rp2040_hal::entry] fn main() -> ! { // Grab our singleton objects let mut pac = pac::Peripherals::take().unwrap(); let core = pac::CorePeripherals::take().unwrap(); // Set up the watchdog driver - needed by the clock setup code let mut watchdog = hal::Watchdog::new(pac.WATCHDOG); // Configure the clocks let clocks = hal::clocks::init_clocks_and_plls( XTAL_FREQ_HZ, pac.XOSC, pac.CLOCKS, pac.PLL_SYS, pac.PLL_USB, &mut pac.RESETS, &mut watchdog, ) .unwrap(); // The delay object lets us wait for specified amounts of time (in // milliseconds) let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().to_Hz()); // The single-cycle I/O block controls our GPIO pins let sio = hal::Sio::new(pac.SIO); // Set the pins to their default state let pins = hal::gpio::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); // UART TX (characters sent from pico) on pin 1 (GPIO0) and RX (on pin 2 (GPIO1) let uart_pins = ( pins.gpio0.into_function::(), pins.gpio1.into_function::(), ); // Create a UART driver let mut uart = hal::uart::UartPeripheral::new(pac.UART0, uart_pins, &mut pac.RESETS) .enable( UartConfig::new(115200.Hz(), DataBits::Eight, None, StopBits::One), clocks.peripheral_clock.freq(), ) .unwrap(); // Write to the UART uart.write_full_blocking(b"ADC FIFO DMA example\r\n"); // Initialize DMA let dma = pac.DMA.split(&mut pac.RESETS); // Enable ADC let mut adc = hal::Adc::new(pac.ADC, &mut pac.RESETS); // Enable the temperature sense channel let mut temperature_sensor = adc.take_temp_sensor().unwrap(); // Configure GPIO26 as an ADC input let adc_pin_0 = hal::adc::AdcPin::new(pins.gpio26.into_floating_input()).unwrap(); // we'll capture 1000 samples in total (500 per channel) // NOTE: when calling `shift_8bit` below, the type here must be changed from `u16` to `u8` let buf_for_samples = singleton!(: [u16; 1000] = [0; 1000]).unwrap(); // Configure free-running mode: let mut adc_fifo = adc .build_fifo() // Set clock divider to target a sample rate of 1000 samples per second (1ksps). // The value was calculated by `(48MHz / 1ksps) - 1 = 47999.0`. // Please check the `clock_divider` method documentation for details. .clock_divider(47999, 0) // sample the temperature sensor first .set_channel(&mut temperature_sensor) // then alternate between GPIO26 and the temperature sensor .round_robin((&adc_pin_0, &temperature_sensor)) // Uncomment this line to produce 8-bit samples, instead of 12 bit (lower bits are discarded) //.shift_8bit() // Enable DMA transfers for the FIFO .enable_dma() // Create the FIFO, but don't start it just yet .start_paused(); // Start a DMA transfer (must happen before resuming the ADC FIFO) let dma_transfer = single_buffer::Config::new(dma.ch0, adc_fifo.dma_read_target(), buf_for_samples).start(); // Resume the FIFO to start capturing adc_fifo.resume(); // initialize a timer, to measure the total sampling time (printed below) let timer = hal::Timer::new(pac.TIMER, &mut pac.RESETS, &clocks); // NOTE: in a real-world program, instead of calling `wait` now, you would probably: // 1. Enable one of the DMA interrupts for the channel (e.g. `dma.ch0.enable_irq0()`) // 2. Set up a handler for the respective `DMA_IRQ_*` interrupt // 3. Call `wait` only within that interrupt, which will be fired once the transfer is complete. // the DMA unit takes care of shuffling data from the FIFO into the buffer. // We just sit here and wait... 😴 let (_ch, _adc_read_target, buf_for_samples) = dma_transfer.wait(); // ^^^ the three results here (channel, adc::DmaReadTarget, write target) can be reused // right away to start another transfer. let time_taken = timer.get_counter(); uart.write_full_blocking(b"Done sampling, printing results:\r\n"); // Stop free-running mode (the returned `adc` can be reused for future captures) let _adc = adc_fifo.stop(); // Print the measured values for i in 0..500 { writeln!( uart, "Temp:\t{}\tPin\t{}\r", buf_for_samples[i * 2], buf_for_samples[i * 2 + 1] ) .unwrap(); } writeln!(uart, "Sampling took: {}\r", time_taken).unwrap(); loop { delay.delay_ms(1000); } } // End of file