//! # Alloc Example //! //! Uses alloc to create a Vec. //! //! This will blink an LED attached to GP25, which is the pin the Pico uses for //! the on-board LED. It may need to be adapted to your particular board layout //! and/or pin assignment. //! //! While blinkin the LED, it will continuously push to a `Vec`, which will //! eventually lead to a panic due to an out of memory condition. //! //! See the `Cargo.toml` file for Copyright and licence details. #![no_std] #![no_main] extern crate alloc; use alloc::vec::Vec; use embedded_alloc::Heap; // The macro for our start-up function use cortex_m_rt::entry; #[global_allocator] static ALLOCATOR: Heap = Heap::empty(); // Ensure we halt the program on panic (if we don't mention this crate it won't // be linked) use panic_halt as _; // Alias for our HAL crate use rp2040_hal as hal; // A shorter alias for the Peripheral Access Crate, which provides low-level // register access use hal::pac; // Some traits we need use embedded_hal::delay::DelayNs; use embedded_hal::digital::OutputPin; /// The linker will place this boot block at the start of our program image. We /// need this to help the ROM bootloader get our code up and running. /// Note: This boot block is not necessary when using a rp-hal based BSP /// as the BSPs already perform this step. #[link_section = ".boot2"] #[used] pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H; /// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust /// if your board has a different frequency const XTAL_FREQ_HZ: u32 = 12_000_000u32; /// Entry point to our bare-metal application. /// /// The `#[entry]` macro ensures the Cortex-M start-up code calls this function /// as soon as all global variables are initialised. /// /// The function configures the RP2040 peripherals, then blinks the LED in an /// infinite loop. #[entry] fn main() -> ! { { use core::mem::MaybeUninit; const HEAP_SIZE: usize = 1024; static mut HEAP: [MaybeUninit; HEAP_SIZE] = [MaybeUninit::uninit(); HEAP_SIZE]; unsafe { ALLOCATOR.init(HEAP.as_ptr() as usize, HEAP_SIZE) } } // Grab our singleton objects let mut pac = pac::Peripherals::take().unwrap(); // Set up the watchdog driver - needed by the clock setup code let mut watchdog = hal::Watchdog::new(pac.WATCHDOG); // Configure the clocks // // The default is to generate a 125 MHz system clock let clocks = hal::clocks::init_clocks_and_plls( XTAL_FREQ_HZ, pac.XOSC, pac.CLOCKS, pac.PLL_SYS, pac.PLL_USB, &mut pac.RESETS, &mut watchdog, ) .ok() .unwrap(); let mut timer = rp2040_hal::Timer::new(pac.TIMER, &mut pac.RESETS, &clocks); // The single-cycle I/O block controls our GPIO pins let sio = hal::Sio::new(pac.SIO); // Set the pins to their default state let pins = hal::gpio::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); // Configure GPIO25 as an output let mut led_pin = pins.gpio25.into_push_pull_output(); let mut xs = Vec::new(); xs.push(1); // Blink the LED at 1 Hz loop { led_pin.set_high().unwrap(); let len = xs.len() as u32; timer.delay_ms(100 * len); xs.push(1); led_pin.set_low().unwrap(); timer.delay_ms(100 * len); xs.push(1); } } // End of file