//! # I²C Example //! //! This application demonstrates how to talk to I²C devices with an RP2040. //! //! It may need to be adapted to your particular board layout and/or pin assignment. //! //! See the `Cargo.toml` file for Copyright and license details. #![no_std] #![no_main] // Ensure we halt the program on panic (if we don't mention this crate it won't // be linked) use panic_halt as _; // Alias for our HAL crate use rp2040_hal as hal; // Some traits we need use embedded_hal_0_2::blocking::i2c::Write; use hal::fugit::RateExtU32; // A shorter alias for the Peripheral Access Crate, which provides low-level // register access and a gpio related types. use hal::{ gpio::{FunctionI2C, Pin}, pac, }; /// The linker will place this boot block at the start of our program image. We /// need this to help the ROM bootloader get our code up and running. /// Note: This boot block is not necessary when using a rp-hal based BSP /// as the BSPs already perform this step. #[link_section = ".boot2"] #[used] pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H; /// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust /// if your board has a different frequency const XTAL_FREQ_HZ: u32 = 12_000_000u32; /// Entry point to our bare-metal application. /// /// The `#[rp2040_hal::entry]` macro ensures the Cortex-M start-up code calls this function /// as soon as all global variables and the spinlock are initialised. /// /// The function configures the RP2040 peripherals, then performs a single I²C /// write to a fixed address. #[rp2040_hal::entry] fn main() -> ! { let mut pac = pac::Peripherals::take().unwrap(); // Set up the watchdog driver - needed by the clock setup code let mut watchdog = hal::Watchdog::new(pac.WATCHDOG); // Configure the clocks let clocks = hal::clocks::init_clocks_and_plls( XTAL_FREQ_HZ, pac.XOSC, pac.CLOCKS, pac.PLL_SYS, pac.PLL_USB, &mut pac.RESETS, &mut watchdog, ) .unwrap(); // The single-cycle I/O block controls our GPIO pins let sio = hal::Sio::new(pac.SIO); // Set the pins to their default state let pins = hal::gpio::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); // Configure two pins as being I²C, not GPIO let sda_pin: Pin<_, FunctionI2C, _> = pins.gpio18.reconfigure(); let scl_pin: Pin<_, FunctionI2C, _> = pins.gpio19.reconfigure(); // let not_an_scl_pin: Pin<_, FunctionI2C, PullUp> = pins.gpio20.reconfigure(); // Create the I²C drive, using the two pre-configured pins. This will fail // at compile time if the pins are in the wrong mode, or if this I²C // peripheral isn't available on these pins! let mut i2c = hal::I2C::i2c1( pac.I2C1, sda_pin, scl_pin, // Try `not_an_scl_pin` here 400.kHz(), &mut pac.RESETS, &clocks.system_clock, ); // Write three bytes to the I²C device with 7-bit address 0x2C i2c.write(0x2Cu8, &[1, 2, 3]).unwrap(); // Demo finish - just loop until reset loop { cortex_m::asm::wfi(); } } // End of file