//! # LCD Display Example //! //! In this example, the RP2040 is configured to drive a small two-line //! alphanumeric LCD using the //! [HD44780](https://crates.io/crates/hd44780-driver) driver. //! //! It drives the LCD by pushing data out of six GPIO pins. It may need to be //! adapted to your particular board layout and/or pin assignment. //! //! See the `Cargo.toml` file for Copyright and license details. #![no_std] #![no_main] // Ensure we halt the program on panic (if we don't mention this crate it won't // be linked) use panic_halt as _; // Alias for our HAL crate use rp2040_hal as hal; // Our LCD driver use hd44780_driver as hd44780; // Some traits we need use rp2040_hal::clocks::Clock; // A shorter alias for the Peripheral Access Crate, which provides low-level // register access use hal::pac; /// The linker will place this boot block at the start of our program image. We /// need this to help the ROM bootloader get our code up and running. /// Note: This boot block is not necessary when using a rp-hal based BSP /// as the BSPs already perform this step. #[link_section = ".boot2"] #[used] pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H; /// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust /// if your board has a different frequency const XTAL_FREQ_HZ: u32 = 12_000_000u32; /// Entry point to our bare-metal application. /// /// The `#[rp2040_hal::entry]` macro ensures the Cortex-M start-up code calls this function /// as soon as all global variables and the spinlock are initialised. /// /// The function configures the RP2040 peripherals, writes to the LCD, then goes /// to sleep. #[rp2040_hal::entry] fn main() -> ! { // Grab our singleton objects let mut pac = pac::Peripherals::take().unwrap(); let core = pac::CorePeripherals::take().unwrap(); // Set up the watchdog driver - needed by the clock setup code let mut watchdog = hal::Watchdog::new(pac.WATCHDOG); // Configure the clocks let clocks = hal::clocks::init_clocks_and_plls( XTAL_FREQ_HZ, pac.XOSC, pac.CLOCKS, pac.PLL_SYS, pac.PLL_USB, &mut pac.RESETS, &mut watchdog, ) .unwrap(); // The delay object lets us wait for specified amounts of time (in // milliseconds) let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().to_Hz()); // The single-cycle I/O block controls our GPIO pins let sio = hal::Sio::new(pac.SIO); // Set the pins to their default state let pins = hal::gpio::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); // Create the LCD driver from some GPIO pins let mut lcd = hd44780::HD44780::new_4bit( pins.gpio16.into_push_pull_output(), // Register Select pins.gpio17.into_push_pull_output(), // Enable pins.gpio18.into_push_pull_output(), // d4 pins.gpio19.into_push_pull_output(), // d5 pins.gpio20.into_push_pull_output(), // d6 pins.gpio21.into_push_pull_output(), // d7 &mut delay, ) .unwrap(); // Clear the screen lcd.reset(&mut delay).unwrap(); lcd.clear(&mut delay).unwrap(); // Write to the top line lcd.write_str("rp-hal on", &mut delay).unwrap(); // Move the cursor lcd.set_cursor_pos(40, &mut delay).unwrap(); // Write more more text lcd.write_str("HD44780!", &mut delay).unwrap(); // Do nothing - we're finished loop { cortex_m::asm::wfi(); } } // End of file