//! # Multicore FIFO + GPIO 'Blinky' Example //! //! This application demonstrates FIFO communication between the CPU cores on the RP2040. //! Core 0 will calculate and send a delay value to Core 1, which will then wait that long //! before toggling the LED. //! Core 0 will wait for Core 1 to complete this task and send an acknowledgement value. //! //! It may need to be adapted to your particular board layout and/or pin assignment. //! //! See the `Cargo.toml` file for Copyright and license details. #![no_std] #![no_main] use hal::clocks::Clock; use hal::multicore::{Multicore, Stack}; use hal::sio::Sio; // Ensure we halt the program on panic (if we don't mention this crate it won't // be linked) use panic_halt as _; // Alias for our HAL crate use rp2040_hal as hal; // A shorter alias for the Peripheral Access Crate, which provides low-level // register access use hal::pac; // Some traits we need use embedded_hal::digital::StatefulOutputPin; /// The linker will place this boot block at the start of our program image. We /// need this to help the ROM bootloader get our code up and running. /// Note: This boot block is not necessary when using a rp-hal based BSP /// as the BSPs already perform this step. #[link_section = ".boot2"] #[used] pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H; /// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust /// if your board has a different frequency const XTAL_FREQ_HZ: u32 = 12_000_000u32; /// Value to indicate that Core 1 has completed its task const CORE1_TASK_COMPLETE: u32 = 0xEE; /// Stack for core 1 /// /// Core 0 gets its stack via the normal route - any memory not used by static values is /// reserved for stack and initialised by cortex-m-rt. /// To get the same for Core 1, we would need to compile everything separately and /// modify the linker file for both programs, and that's quite annoying. /// So instead, core1.spawn takes a [usize] which gets used for the stack. /// NOTE: We use the `Stack` struct here to ensure that it has 32-byte alignment, which allows /// the stack guard to take up the least amount of usable RAM. static mut CORE1_STACK: Stack<4096> = Stack::new(); fn core1_task(sys_freq: u32) -> ! { let mut pac = unsafe { pac::Peripherals::steal() }; let core = unsafe { pac::CorePeripherals::steal() }; let mut sio = Sio::new(pac.SIO); let pins = hal::gpio::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); let mut led_pin = pins.gpio25.into_push_pull_output(); let mut delay = cortex_m::delay::Delay::new(core.SYST, sys_freq); loop { let input = sio.fifo.read(); if let Some(word) = input { delay.delay_ms(word); led_pin.toggle().unwrap(); sio.fifo.write_blocking(CORE1_TASK_COMPLETE); }; } } /// Entry point to our bare-metal application. /// /// The `#[rp2040_hal::entry]` macro ensures the Cortex-M start-up code calls this function /// as soon as all global variables and the spinlock are initialised. /// /// The function configures the RP2040 peripherals, then toggles a GPIO pin in /// an infinite loop. If there is an LED connected to that pin, it will blink. #[rp2040_hal::entry] fn main() -> ! { // Grab our singleton objects let mut pac = pac::Peripherals::take().unwrap(); let _core = pac::CorePeripherals::take().unwrap(); // Set up the watchdog driver - needed by the clock setup code let mut watchdog = hal::watchdog::Watchdog::new(pac.WATCHDOG); // Configure the clocks let clocks = hal::clocks::init_clocks_and_plls( XTAL_FREQ_HZ, pac.XOSC, pac.CLOCKS, pac.PLL_SYS, pac.PLL_USB, &mut pac.RESETS, &mut watchdog, ) .unwrap(); let sys_freq = clocks.system_clock.freq().to_Hz(); // The single-cycle I/O block controls our GPIO pins let mut sio = hal::sio::Sio::new(pac.SIO); let mut mc = Multicore::new(&mut pac.PSM, &mut pac.PPB, &mut sio.fifo); let cores = mc.cores(); let core1 = &mut cores[1]; let _test = core1.spawn(unsafe { &mut CORE1_STACK.mem }, move || { core1_task(sys_freq) }); /// How much we adjust the LED period every cycle const LED_PERIOD_INCREMENT: i32 = 2; /// The minimum LED toggle interval we allow for. const LED_PERIOD_MIN: i32 = 0; /// The maximum LED toggle interval period we allow for. Keep it reasonably short so it's easy to see. const LED_PERIOD_MAX: i32 = 100; // Our current LED period. It starts at the shortest period, which is the highest blink frequency let mut led_period: i32 = LED_PERIOD_MIN; // The direction we're incrementing our LED period. // Since we start at the minimum value, start by counting up let mut count_up = true; loop { if count_up { // Increment our period led_period += LED_PERIOD_INCREMENT; // Change direction of increment if we hit the limit if led_period > LED_PERIOD_MAX { led_period = LED_PERIOD_MAX; count_up = false; } } else { // Decrement our period led_period -= LED_PERIOD_INCREMENT; // Change direction of increment if we hit the limit if led_period < LED_PERIOD_MIN { led_period = LED_PERIOD_MIN; count_up = true; } } // It should not be possible for led_period to go negative, but let's ensure that. if led_period < 0 { led_period = 0; } // Send the new delay time to Core 1. We convert it sio.fifo.write(led_period as u32); // Sleep until Core 1 sends a message to tell us it is done let ack = sio.fifo.read_blocking(); if ack != CORE1_TASK_COMPLETE { // In a real application you might want to handle the case // where the CPU sent the wrong message - we're going to // ignore it here. } } } // End of file