//! # 'ROM Functions' Example //! //! This application demonstrates how to call functions in the RP2040's boot ROM. //! //! It may need to be adapted to your particular board layout and/or pin assignment. //! //! See the `Cargo.toml` file for Copyright and license details. #![no_std] #![no_main] // Ensure we halt the program on panic (if we don't mention this crate it won't // be linked) use panic_halt as _; // Alias for our HAL crate use rp2040_hal as hal; // A shorter alias for the Peripheral Access Crate, which provides low-level // register access use hal::pac; // Some traits we need use core::fmt::Write; use hal::fugit::RateExtU32; use hal::Clock; // UART related types use hal::uart::{DataBits, StopBits, UartConfig}; /// The linker will place this boot block at the start of our program image. We /// need this to help the ROM bootloader get our code up and running. /// Note: This boot block is not necessary when using a rp-hal based BSP /// as the BSPs already perform this step. #[link_section = ".boot2"] #[used] pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H; /// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust /// if your board has a different frequency const XTAL_FREQ_HZ: u32 = 12_000_000u32; /// Our Cortex-M systick goes from this value down to zero. For our timer maths /// to work, this value must be of the form `2**N - 1`. const SYSTICK_RELOAD: u32 = 0x00FF_FFFF; /// Entry point to our bare-metal application. /// /// The `#[rp2040_hal::entry]` macro ensures the Cortex-M start-up code calls this function /// as soon as all global variables and the spinlock are initialised. /// /// The function configures the RP2040 peripherals, then writes to the UART in /// an infinite loop. #[rp2040_hal::entry] fn main() -> ! { // Grab our singleton objects let mut pac = pac::Peripherals::take().unwrap(); let mut core = pac::CorePeripherals::take().unwrap(); // Set up the watchdog driver - needed by the clock setup code let mut watchdog = hal::Watchdog::new(pac.WATCHDOG); // Configure the clocks let clocks = hal::clocks::init_clocks_and_plls( XTAL_FREQ_HZ, pac.XOSC, pac.CLOCKS, pac.PLL_SYS, pac.PLL_USB, &mut pac.RESETS, &mut watchdog, ) .unwrap(); // The single-cycle I/O block controls our GPIO pins let sio = hal::Sio::new(pac.SIO); // Set the pins to their default state let pins = hal::gpio::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); let uart_pins = ( // UART TX (characters sent from RP2040) on pin 1 (GPIO0) pins.gpio0.into_function::(), // UART RX (characters received by RP2040) on pin 2 (GPIO1) pins.gpio1.into_function::(), ); let mut uart = hal::uart::UartPeripheral::new(pac.UART0, uart_pins, &mut pac.RESETS) .enable( UartConfig::new(9600.Hz(), DataBits::Eight, None, StopBits::One), clocks.peripheral_clock.freq(), ) .unwrap(); writeln!(uart, "ROM Copyright: {}", hal::rom_data::copyright_string()).unwrap(); writeln!( uart, "ROM Git Revision: 0x{:x}", hal::rom_data::git_revision() ) .unwrap(); // Some ROM functions are exported directly, so we can just call them writeln!( uart, "popcount32(0xF000_0001) = {}", hal::rom_data::popcount32(0xF000_0001) ) .unwrap(); // Try to hide the numbers from the compiler so it is forced to do the maths let x = hal::rom_data::popcount32(0xFF) as f32; // 8 let y = hal::rom_data::popcount32(0xFFF) as f32; // 12 // Use systick as a count-down timer core.SYST.set_reload(SYSTICK_RELOAD); core.SYST.clear_current(); core.SYST.enable_counter(); // Do some simple sums let start_soft = cortex_m::peripheral::SYST::get_current(); core::sync::atomic::compiler_fence(core::sync::atomic::Ordering::SeqCst); let soft_result = x * y; core::sync::atomic::compiler_fence(core::sync::atomic::Ordering::SeqCst); let end_soft = cortex_m::peripheral::SYST::get_current(); writeln!( uart, "{} x {} = {} in {} systicks (doing soft-float maths)", x, y, soft_result, calc_delta(start_soft, end_soft) ) .unwrap(); // Some functions require a look-up in a table. First we do the lookup and // find the function pointer in ROM (you only want to do this once per // function). let fmul = hal::rom_data::float_funcs::fmul::ptr(); // Then we can call the function whenever we want let start_rom = cortex_m::peripheral::SYST::get_current(); let rom_result = fmul(x, y); let end_rom = cortex_m::peripheral::SYST::get_current(); writeln!( uart, "{} x {} = {} in {} systicks (using the ROM)", x, y, rom_result, calc_delta(start_rom, end_rom) ) .unwrap(); // Now just spin (whilst the UART does its thing) for _ in 0..1_000_000 { cortex_m::asm::nop(); } // Reboot back into USB mode (no activity, both interfaces enabled) rp2040_hal::rom_data::reset_to_usb_boot(0, 0); // In case the reboot fails loop { cortex_m::asm::wfi(); } } /// Calculate the number of systicks elapsed between two counter readings. /// /// Note: SYSTICK starts at `SYSTICK_RELOAD` and counts down towards zero, so /// these comparisons might appear to be backwards. /// /// ``` /// assert_eq!(1, calc_delta(SYSTICK_RELOAD, SYSTICK_RELOAD - 1)); /// assert_eq!(2, calc_delta(0, SYSTICK_RELOAD - 1)); /// ``` fn calc_delta(start: u32, end: u32) -> u32 { if start < end { (start.wrapping_sub(end)) & SYSTICK_RELOAD } else { start - end } } // End of file