//! # RTC Sleep Example //! //! This application demonstrates use of RTC Interrupt to wake from deepsleep. //! It is also intended as a general introduction to interrupts and RTC with RP2040. //! //! See the `Cargo.toml` file for Copyright and license details. #![no_std] #![no_main] // Ensure we halt the program on panic (if we don't mention this crate it won't // be linked) use panic_halt as _; // Alias for our HAL crate use rp2040_hal as hal; // A shorter alias for the Peripheral Access Crate, which provides low-level // register access and to the gpio and rtc modules. use hal::{clocks::ClockGate, gpio, pac, rtc}; // Some traits we need use embedded_hal::digital::StatefulOutputPin; // Our interrupt macro use hal::pac::interrupt; // Some short-cuts to useful types use core::cell::RefCell; use critical_section::Mutex; // Time & clock traits use fugit::{HertzU32, RateExtU32}; use hal::Clock; /// The linker will place this boot block at the start of our program image. We /// need this to help the ROM bootloader get our code up and running. /// Note: This boot block is not necessary when using a rp-hal based BSP /// as the BSPs already perform this step. #[link_section = ".boot2"] #[used] pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H; /// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust /// if your board has a different frequency const XTAL_FREQ_HZ: HertzU32 = HertzU32::Hz(12_000_000u32); /// This how we transfer our RTC instance into the Interrupt Handler. static GLOBAL_SHARED: Mutex>> = Mutex::new(RefCell::new(None)); /// Entry point to our bare-metal application. /// /// The `#[rp2040_hal::entry]` macro ensures the Cortex-M start-up code calls this function /// as soon as all global variables and the spinlock are initialised. /// /// The function configures the RP2040 peripherals, then toggles a GPIO pin in /// an infinite loop. If there is an LED connected to that pin, it will blink. #[rp2040_hal::entry] fn main() -> ! { // Grab our singleton objects let mut pac = pac::Peripherals::take().unwrap(); let mut core = pac::CorePeripherals::take().unwrap(); // Configure the clocks let mut clocks = hal::clocks::ClocksManager::new(pac.CLOCKS); // First, enable and wait for xosc to be stable. let xosc = hal::xosc::setup_xosc_blocking(pac.XOSC, XTAL_FREQ_HZ).unwrap(); // use xosc at 12MHz for clk_ref -> clk_sys -> clk_peri clocks .reference_clock .configure_clock(&xosc, XTAL_FREQ_HZ) .unwrap(); clocks .system_clock .configure_clock(&clocks.reference_clock, XTAL_FREQ_HZ) .unwrap(); clocks .peripheral_clock .configure_clock(&clocks.system_clock, XTAL_FREQ_HZ) .unwrap(); // use xosc at 12MHz/256 for clk_rtc clocks.rtc_clock.configure_clock(&xosc, 46875.Hz()).unwrap(); // Only leave the rtc's clock enabled while in deep sleep. let mut config = ClockGate::default(); config.set_rtc_rtc(true); clocks.configure_sleep_enable(config); // The single-cycle I/O block controls our GPIO pins let sio = hal::Sio::new(pac.SIO); // Set the pins to their default state let pins = gpio::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); // Configure GPIO 25 as an output to drive our LED. let mut led = pins.gpio25.into_push_pull_output(); // Prepare the RTC for the example using the 1/1/0 (Day/Month/Year) at 0:00:00 as the initial // day and time (it may not have been a Monday but it doesn't matter for this example.). let mut rtc = hal::rtc::RealTimeClock::new( pac.RTC, clocks.rtc_clock, &mut pac.RESETS, rtc::DateTime { year: 0, month: 1, day: 1, day_of_week: rtc::DayOfWeek::Monday, hour: 0, minute: 0, second: 0, }, ) .unwrap(); // Trigger the IRQ every time a minute starts. rtc.schedule_alarm(rtc::DateTimeFilter::default().second(0)); // Let the alarm trigger an interrupt in the NVIC. rtc.enable_interrupt(); // Give away our rtc by moving them into the `GLOBAL_SHARED` variable. // We won't need to access it in the main thread again critical_section::with(|cs| { GLOBAL_SHARED.borrow(cs).replace(Some(rtc)); }); // Let the core enter deep-sleep while waiting on wfi core.SCB.set_sleepdeep(); // Unmask the RTC IRQ so that the NVIC interrupt controller // will jump to the interrupt function when the interrupt occurs. // We do this last so that the interrupt can't go off while // it is in the middle of being configured unsafe { pac::NVIC::unmask(pac::Interrupt::RTC_IRQ); } loop { // Wait to be awaken by an interrupt cortex_m::asm::wfi(); // Toggle the led let _ = led.toggle(); } } #[allow(non_snake_case)] #[interrupt] fn RTC_IRQ() { critical_section::with(|cs| { // borrow the content of the Mutexed RefCell. let mut maybe_rtc = GLOBAL_SHARED.borrow_ref_mut(cs); // borrow the content of the Option if let Some(rtc) = maybe_rtc.as_mut() { // clear the interrupt flag so that it stops firing for now and can be triggered again. rtc.clear_interrupt(); } }); } // End of file