//! # SPI Example //! //! This application demonstrates how to use the SPI Driver to talk to a remote //! SPI device. //! //! //! It may need to be adapted to your particular board layout and/or pin //! assignment. //! //! See the `Cargo.toml` file for Copyright and license details. #![no_std] #![no_main] // Ensure we halt the program on panic (if we don't mention this crate it won't // be linked) use panic_halt as _; // Alias for our HAL crate use rp2040_hal as hal; // Some traits we need use cortex_m::prelude::*; use hal::clocks::Clock; use hal::fugit::RateExtU32; // A shorter alias for the Peripheral Access Crate, which provides low-level // register access use hal::pac; /// The linker will place this boot block at the start of our program image. We /// need this to help the ROM bootloader get our code up and running. /// Note: This boot block is not necessary when using a rp-hal based BSP /// as the BSPs already perform this step. #[link_section = ".boot2"] #[used] pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H; /// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust /// if your board has a different frequency const XTAL_FREQ_HZ: u32 = 12_000_000u32; /// Entry point to our bare-metal application. /// /// The `#[rp2040_hal::entry]` macro ensures the Cortex-M start-up code calls this function /// as soon as all global variables and the spinlock are initialised. /// /// The function configures the RP2040 peripherals, then performs some example /// SPI transactions, then goes to sleep. #[rp2040_hal::entry] fn main() -> ! { // Grab our singleton objects let mut pac = pac::Peripherals::take().unwrap(); // Set up the watchdog driver - needed by the clock setup code let mut watchdog = hal::Watchdog::new(pac.WATCHDOG); // Configure the clocks let clocks = hal::clocks::init_clocks_and_plls( XTAL_FREQ_HZ, pac.XOSC, pac.CLOCKS, pac.PLL_SYS, pac.PLL_USB, &mut pac.RESETS, &mut watchdog, ) .unwrap(); // The single-cycle I/O block controls our GPIO pins let sio = hal::Sio::new(pac.SIO); // Set the pins to their default state let pins = hal::gpio::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); // These are implicitly used by the spi driver if they are in the correct mode let spi_mosi = pins.gpio7.into_function::(); let spi_miso = pins.gpio4.into_function::(); let spi_sclk = pins.gpio6.into_function::(); let spi = hal::spi::Spi::<_, _, _, 8>::new(pac.SPI0, (spi_mosi, spi_miso, spi_sclk)); // Exchange the uninitialised SPI driver for an initialised one let mut spi = spi.init( &mut pac.RESETS, clocks.peripheral_clock.freq(), 16.MHz(), embedded_hal::spi::MODE_0, ); // Write out 0, ignore return value if spi.write(&[0]).is_ok() { // SPI write was successful }; // write 50, then check the return let send_success = spi.send(50); match send_success { Ok(_) => { // We succeeded, check the read value if let Ok(_x) = spi.read() { // We got back `x` in exchange for the 0x50 we sent. }; } Err(_) => todo!(), } // Do a read+write at the same time. Data in `buffer` will be replaced with // the data read from the SPI device. let mut buffer: [u8; 4] = [1, 2, 3, 4]; let transfer_success = spi.transfer(&mut buffer); #[allow(clippy::single_match)] match transfer_success { Ok(_) => {} // Handle success Err(_) => {} // handle errors }; loop { cortex_m::asm::wfi(); } } // End of file