//! # UART DMA Example //! //! This application demonstrates how to use the UART peripheral with the //! DMA controller. //! //! It may need to be adapted to your particular board layout and/or pin //! assignment. //! //! See the `Cargo.toml` file for Copyright and license details. #![no_std] #![no_main] use cortex_m::singleton; // Ensure we halt the program on panic (if we don't mention this crate it won't // be linked) use panic_halt as _; // Alias for our HAL crate use rp2040_hal as hal; // A shorter alias for the Peripheral Access Crate, which provides low-level // register access use hal::{dma::DMAExt, pac}; // Some traits we need use hal::fugit::RateExtU32; use rp2040_hal::clocks::Clock; // UART related types use hal::uart::{DataBits, StopBits, UartConfig}; /// The linker will place this boot block at the start of our program image. We /// need this to help the ROM bootloader get our code up and running. /// Note: This boot block is not necessary when using a rp-hal based BSP /// as the BSPs already perform this step. #[link_section = ".boot2"] #[used] pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H; /// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust /// if your board has a different frequency const XTAL_FREQ_HZ: u32 = 12_000_000u32; /// Entry point to our bare-metal application. /// /// The `#[rp2040_hal::entry]` macro ensures the Cortex-M start-up code calls this function /// as soon as all global variables and the spinlock are initialised. /// /// The function configures the RP2040 peripherals, then writes to the UART in /// an infinite loop. #[rp2040_hal::entry] fn main() -> ! { // Grab our singleton objects let mut pac = pac::Peripherals::take().unwrap(); let core = pac::CorePeripherals::take().unwrap(); // Set up the watchdog driver - needed by the clock setup code let mut watchdog = hal::Watchdog::new(pac.WATCHDOG); // Configure the clocks let clocks = hal::clocks::init_clocks_and_plls( XTAL_FREQ_HZ, pac.XOSC, pac.CLOCKS, pac.PLL_SYS, pac.PLL_USB, &mut pac.RESETS, &mut watchdog, ) .unwrap(); let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().to_Hz()); // The single-cycle I/O block controls our GPIO pins let sio = hal::Sio::new(pac.SIO); // Set the pins to their default state let pins = hal::gpio::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); let uart_pins = ( // UART TX (characters sent from RP2040) on pin 1 (GPIO0) pins.gpio0.into_function(), // UART RX (characters received by RP2040) on pin 2 (GPIO1) pins.gpio1.into_function(), ); let uart = hal::uart::UartPeripheral::new(pac.UART0, uart_pins, &mut pac.RESETS) .enable( UartConfig::new(9600.Hz(), DataBits::Eight, None, StopBits::One), clocks.peripheral_clock.freq(), ) .unwrap(); // Initialize DMA. let dma = pac.DMA.split(&mut pac.RESETS); uart.write_full_blocking(b"\r\n\r\nUART DMA echo example\r\n\r\n"); // In order to use DMA we need to split the UART into a RX (receive) and TX (transmit) pair let (rx, tx) = uart.split(); // We can still write to the tx side of the UART after splitting tx.write_full_blocking(b"Regular UART write\r\n"); // And we can DMA from a buffer into the UART let teststring = b"DMA UART write\r\n"; let tx_transfer = hal::dma::single_buffer::Config::new(dma.ch0, teststring, tx).start(); // Wait for the DMA transfer to finish so we can reuse the tx and the dma channel let (ch0, _teststring, tx) = tx_transfer.wait(); // Let's test DMA RX into a buffer. tx.write_full_blocking(b"Waiting for you to type 5 letters...\r\n"); let rx_buf = singleton!(: [u8; 5] = [0; 5]).unwrap(); let rx_transfer = hal::dma::single_buffer::Config::new(ch0, rx, rx_buf).start(); let (ch0, rx, rx_buf) = rx_transfer.wait(); // Echo back the 5 characters the user typed tx.write_full_blocking(b"You wrote \""); tx.write_full_blocking(rx_buf); tx.write_full_blocking(b"\"\r\n"); // Now just keep echoing anything that is received back out of TX tx.write_full_blocking(b"Now echoing any character you write...\r\n"); let _tx_transfer = hal::dma::single_buffer::Config::new(ch0, rx, tx).start(); loop { // everything should be handled by DMA, nothing else to do delay.delay_ms(1000); } } // End of file