//! # Watchdog Example //! //! This application demonstrates how to use the RP2040 Watchdog. //! //! It may need to be adapted to your particular board layout and/or pin assignment. //! //! See the `Cargo.toml` file for Copyright and license details. #![no_std] #![no_main] // Ensure we halt the program on panic (if we don't mention this crate it won't // be linked) use panic_halt as _; // Alias for our HAL crate use rp2040_hal as hal; // A shorter alias for the Peripheral Access Crate, which provides low-level // register access use hal::pac; // Some traits we need use embedded_hal::digital::OutputPin; use hal::fugit::ExtU32; use rp2040_hal::clocks::Clock; /// The linker will place this boot block at the start of our program image. We /// need this to help the ROM bootloader get our code up and running. /// Note: This boot block is not necessary when using a rp-hal based BSP /// as the BSPs already perform this step. #[link_section = ".boot2"] #[used] pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H; /// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust /// if your board has a different frequency const XTAL_FREQ_HZ: u32 = 12_000_000u32; /// Entry point to our bare-metal application. /// /// The `#[rp2040_hal::entry]` macro ensures the Cortex-M start-up code calls this function /// as soon as all global variables and the spinlock are initialised. /// /// The function configures the RP2040 peripherals, then toggles a GPIO pin in /// an infinite loop. After a period of time, the watchdog will kick in to reset /// the CPU. #[rp2040_hal::entry] fn main() -> ! { // Grab our singleton objects let mut pac = pac::Peripherals::take().unwrap(); let core = pac::CorePeripherals::take().unwrap(); // Set up the watchdog driver - needed by the clock setup code let mut watchdog = hal::Watchdog::new(pac.WATCHDOG); // Configure the clocks let clocks = hal::clocks::init_clocks_and_plls( XTAL_FREQ_HZ, pac.XOSC, pac.CLOCKS, pac.PLL_SYS, pac.PLL_USB, &mut pac.RESETS, &mut watchdog, ) .unwrap(); let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().to_Hz()); // The single-cycle I/O block controls our GPIO pins let sio = hal::Sio::new(pac.SIO); // Set the pins to their default state let pins = hal::gpio::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); // Configure an LED so we can show the current state of the watchdog let mut led_pin = pins.gpio25.into_push_pull_output(); // Set the LED high for 2 seconds so we know when we're about to start the watchdog led_pin.set_high().unwrap(); delay.delay_ms(2000); // Set to watchdog to reset if it's not reloaded within 1.05 seconds, and start it watchdog.start(1_050.millis()); // Blink once a second for 5 seconds, refreshing the watchdog timer once a second to avoid a reset for _ in 1..=5 { led_pin.set_low().unwrap(); delay.delay_ms(500); led_pin.set_high().unwrap(); delay.delay_ms(500); watchdog.feed(); } // Blink 10 times per second, not feeding the watchdog. // The processor should reset in 1.05 seconds, or 5 blinks time loop { led_pin.set_low().unwrap(); delay.delay_ms(100); led_pin.set_high().unwrap(); delay.delay_ms(100); } } // End of file