#ifndef HILBERT_VALUE_HPP #define HILBERT_VALUE_HPP #include "osrm/coordinate.hpp" #include #include namespace osrm { namespace util { // Transform x and y to Hilbert SFC linear coordinate // using N most significant bits of x and y. // References: // [1] Arndt, Jörg. Matters Computational Ideas, Algorithms, Source Code, 2010. 1.31.1 The Hilbert // curve p. 86 // [2] FSM implementation from http://www.hackersdelight.org/hdcodetxt/hilbert/hil_s_from_xy.c.txt // The method is to employ the following state transition table: // ---------------------------------------------------------- // If the current And the next bits then append and enter // state is of x and y are to result state // ---------------------------------------------------------- // A (0, 0) 00 B // A (0, 1) 01 A // A (1, 0) 11 D // A (1, 1) 10 A // B (0, 0) 00 A // B (0, 1) 11 C // B (1, 0) 01 B // B (1, 1) 10 B // C (0, 0) 10 D // C (0, 1) 11 B // C (1, 0) 01 C // C (1, 1) 00 D // D (0, 0) 10 C // D (0, 1) 01 D // D (1, 0) 11 A // D (1, 1) 00 C template inline R HilbertToLinear(T x, T y) { static_assert(N <= sizeof(T) * CHAR_BIT, "input type is smaller than N"); static_assert(2 * N <= sizeof(R) * CHAR_BIT, "output type is smaller than 2N"); R result = 0; unsigned state = 0; for (int i = 0; i < N; ++i) { const unsigned xi = (x >> (sizeof(T) * CHAR_BIT - 1)) & 1; const unsigned yi = (y >> (sizeof(T) * CHAR_BIT - 1)) & 1; x <<= 1; y <<= 1; const unsigned row = 4 * state | 2 * xi | yi; result = (result << 2) | ((0x361E9CB4 >> 2 * row) & 3); state = (0x8FE65831 >> 2 * row) & 3; } return result; } // Computes a 64 bit value that corresponds to the hilbert space filling curve inline std::uint64_t GetHilbertCode(const Coordinate &coordinate) { const std::uint32_t x = static_cast(coordinate.lon) + static_cast(180 * COORDINATE_PRECISION); const std::uint32_t y = static_cast(coordinate.lat) + static_cast(90 * COORDINATE_PRECISION); return HilbertToLinear(x, y); } } } #endif /* HILBERT_VALUE_HPP */