#ifndef BASE_PLUGIN_HPP #define BASE_PLUGIN_HPP #include "engine/api/base_parameters.hpp" #include "engine/api/base_result.hpp" #include "engine/api/flatbuffers/fbresult_generated.h" #include "engine/datafacade/datafacade_base.hpp" #include "engine/phantom_node.hpp" #include "engine/routing_algorithms.hpp" #include "engine/status.hpp" #include "util/coordinate.hpp" #include "util/coordinate_calculation.hpp" #include "util/integer_range.hpp" #include "util/json_container.hpp" #include #include #include #include #include namespace osrm { namespace engine { namespace plugins { class BasePlugin { protected: bool CheckAllCoordinates(const std::vector &coordinates) const { return !std::any_of( std::begin(coordinates), std::end(coordinates), [](const util::Coordinate coordinate) { return !coordinate.IsValid(); }); } bool CheckAlgorithms(const api::BaseParameters ¶ms, const RoutingAlgorithmsInterface &algorithms, osrm::engine::api::ResultT &result) const { if (algorithms.IsValid()) { return true; } if (!algorithms.HasExcludeFlags() && !params.exclude.empty()) { Error("NotImplemented", "This algorithm does not support exclude flags.", result); return false; } if (algorithms.HasExcludeFlags() && !params.exclude.empty()) { Error("InvalidValue", "Exclude flag combination is not supported.", result); return false; } BOOST_ASSERT_MSG(false, "There are only two reasons why the algorithm interface can be invalid."); return false; } struct ErrorRenderer { std::string code; std::string message; ErrorRenderer(std::string code, std::string message) : code(std::move(code)), message(std::move(message)){}; void operator()(util::json::Object &json_result) { json_result.values["code"] = code; json_result.values["message"] = message; }; void operator()(flatbuffers::FlatBufferBuilder &fb_result) { auto error = api::fbresult::CreateErrorDirect(fb_result, code.c_str(), message.c_str()); api::fbresult::FBResultBuilder response(fb_result); response.add_error(true); response.add_code(error); fb_result.Finish(response.Finish()); }; void operator()(std::string &str_result) { str_result = str(boost::format("code=%1% message=%2%") % code % message); }; }; Status Error(const std::string &code, const std::string &message, osrm::engine::api::ResultT &result) const { mapbox::util::apply_visitor(ErrorRenderer(code, message), result); return Status::Error; } // Decides whether to use the phantom node from a big or small component if both are found. // Returns true if all phantom nodes are in the same component after snapping. std::vector SnapPhantomNodes(const std::vector &phantom_node_pair_list) const { const auto check_component_id_is_tiny = [](const std::pair &phantom_pair) { return phantom_pair.first.component.is_tiny; }; // are all phantoms from a tiny cc? const auto check_all_in_same_component = [](const std::vector> &nodes) { const auto component_id = nodes.front().first.component.id; return std::all_of(std::begin(nodes), std::end(nodes), [component_id](const PhantomNodePair &phantom_pair) { return component_id == phantom_pair.first.component.id; }); }; const auto fallback_to_big_component = [](const std::pair &phantom_pair) { if (phantom_pair.first.component.is_tiny && phantom_pair.second.IsValid() && !phantom_pair.second.component.is_tiny) { return phantom_pair.second; } return phantom_pair.first; }; const auto use_closed_phantom = []( const std::pair &phantom_pair) { return phantom_pair.first; }; const bool every_phantom_is_in_tiny_cc = std::all_of(std::begin(phantom_node_pair_list), std::end(phantom_node_pair_list), check_component_id_is_tiny); auto all_in_same_component = check_all_in_same_component(phantom_node_pair_list); std::vector snapped_phantoms; snapped_phantoms.reserve(phantom_node_pair_list.size()); // The only case we don't snap to the big component if all phantoms are in the same small // component if (every_phantom_is_in_tiny_cc && all_in_same_component) { std::transform(phantom_node_pair_list.begin(), phantom_node_pair_list.end(), std::back_inserter(snapped_phantoms), use_closed_phantom); } else { std::transform(phantom_node_pair_list.begin(), phantom_node_pair_list.end(), std::back_inserter(snapped_phantoms), fallback_to_big_component); } return snapped_phantoms; } // Falls back to default_radius for non-set radii std::vector> GetPhantomNodesInRange(const datafacade::BaseDataFacade &facade, const api::BaseParameters ¶meters, const std::vector radiuses, bool use_all_edges = false) const { std::vector> phantom_nodes( parameters.coordinates.size()); BOOST_ASSERT(radiuses.size() == parameters.coordinates.size()); const bool use_hints = !parameters.hints.empty(); const bool use_bearings = !parameters.bearings.empty(); const bool use_approaches = !parameters.approaches.empty(); for (const auto i : util::irange(0UL, parameters.coordinates.size())) { Approach approach = engine::Approach::UNRESTRICTED; if (use_approaches && parameters.approaches[i]) approach = parameters.approaches[i].get(); if (use_hints && parameters.hints[i] && parameters.hints[i]->IsValid(parameters.coordinates[i], facade)) { phantom_nodes[i].push_back(PhantomNodeWithDistance{ parameters.hints[i]->phantom, util::coordinate_calculation::haversineDistance( parameters.coordinates[i], parameters.hints[i]->phantom.location), }); continue; } if (use_bearings && parameters.bearings[i]) { phantom_nodes[i] = facade.NearestPhantomNodesInRange(parameters.coordinates[i], radiuses[i], parameters.bearings[i]->bearing, parameters.bearings[i]->range, approach, use_all_edges); } else { phantom_nodes[i] = facade.NearestPhantomNodesInRange( parameters.coordinates[i], radiuses[i], approach, use_all_edges); } } return phantom_nodes; } std::vector> GetPhantomNodes(const datafacade::BaseDataFacade &facade, const api::BaseParameters ¶meters, unsigned number_of_results) const { std::vector> phantom_nodes( parameters.coordinates.size()); const bool use_hints = !parameters.hints.empty(); const bool use_bearings = !parameters.bearings.empty(); const bool use_radiuses = !parameters.radiuses.empty(); const bool use_approaches = !parameters.approaches.empty(); BOOST_ASSERT(parameters.IsValid()); for (const auto i : util::irange(0UL, parameters.coordinates.size())) { Approach approach = engine::Approach::UNRESTRICTED; if (use_approaches && parameters.approaches[i]) approach = parameters.approaches[i].get(); if (use_hints && parameters.hints[i] && parameters.hints[i]->IsValid(parameters.coordinates[i], facade)) { phantom_nodes[i].push_back(PhantomNodeWithDistance{ parameters.hints[i]->phantom, util::coordinate_calculation::haversineDistance( parameters.coordinates[i], parameters.hints[i]->phantom.location), }); continue; } if (use_bearings && parameters.bearings[i]) { if (use_radiuses && parameters.radiuses[i]) { phantom_nodes[i] = facade.NearestPhantomNodes(parameters.coordinates[i], number_of_results, *parameters.radiuses[i], parameters.bearings[i]->bearing, parameters.bearings[i]->range, approach); } else { phantom_nodes[i] = facade.NearestPhantomNodes(parameters.coordinates[i], number_of_results, parameters.bearings[i]->bearing, parameters.bearings[i]->range, approach); } } else { if (use_radiuses && parameters.radiuses[i]) { phantom_nodes[i] = facade.NearestPhantomNodes(parameters.coordinates[i], number_of_results, *parameters.radiuses[i], approach); } else { phantom_nodes[i] = facade.NearestPhantomNodes( parameters.coordinates[i], number_of_results, approach); } } // we didn't find a fitting node, return error if (phantom_nodes[i].empty()) { break; } } return phantom_nodes; } std::vector GetPhantomNodes(const datafacade::BaseDataFacade &facade, const api::BaseParameters ¶meters) const { std::vector phantom_node_pairs(parameters.coordinates.size()); const bool use_hints = !parameters.hints.empty(); const bool use_bearings = !parameters.bearings.empty(); const bool use_radiuses = !parameters.radiuses.empty(); const bool use_approaches = !parameters.approaches.empty(); const bool use_all_edges = parameters.snapping == api::BaseParameters::SnappingType::Any; BOOST_ASSERT(parameters.IsValid()); for (const auto i : util::irange(0UL, parameters.coordinates.size())) { Approach approach = engine::Approach::UNRESTRICTED; if (use_approaches && parameters.approaches[i]) approach = parameters.approaches[i].get(); if (use_hints && parameters.hints[i] && parameters.hints[i]->IsValid(parameters.coordinates[i], facade)) { phantom_node_pairs[i].first = parameters.hints[i]->phantom; // we don't set the second one - it will be marked as invalid continue; } if (use_bearings && parameters.bearings[i]) { if (use_radiuses && parameters.radiuses[i]) { phantom_node_pairs[i] = facade.NearestPhantomNodeWithAlternativeFromBigComponent( parameters.coordinates[i], *parameters.radiuses[i], parameters.bearings[i]->bearing, parameters.bearings[i]->range, approach, use_all_edges); } else { phantom_node_pairs[i] = facade.NearestPhantomNodeWithAlternativeFromBigComponent( parameters.coordinates[i], parameters.bearings[i]->bearing, parameters.bearings[i]->range, approach, use_all_edges); } } else { if (use_radiuses && parameters.radiuses[i]) { phantom_node_pairs[i] = facade.NearestPhantomNodeWithAlternativeFromBigComponent( parameters.coordinates[i], *parameters.radiuses[i], approach, use_all_edges); } else { phantom_node_pairs[i] = facade.NearestPhantomNodeWithAlternativeFromBigComponent( parameters.coordinates[i], approach, use_all_edges); } } // we didn't find a fitting node, return error if (!phantom_node_pairs[i].first.IsValid()) { // This ensures the list of phantom nodes only consists of valid nodes. // We can use this on the call-site to detect an error. phantom_node_pairs.pop_back(); break; } BOOST_ASSERT(phantom_node_pairs[i].first.IsValid()); BOOST_ASSERT(phantom_node_pairs[i].second.IsValid()); } return phantom_node_pairs; } }; } } } #endif /* BASE_PLUGIN_HPP */