#ifndef DYNAMICGRAPH_HPP #define DYNAMICGRAPH_HPP #include "util/deallocating_vector.hpp" #include "util/exception.hpp" #include "util/exception_utils.hpp" #include "util/integer_range.hpp" #include "util/permutation.hpp" #include "util/typedefs.hpp" #include #include #include #include #include #include #include namespace osrm { namespace util { namespace detail { // These types need to live outside of DynamicGraph // to be not dependable. We need this for transforming graphs // with different data. template struct DynamicNode { // index of the first edge EdgeIterator first_edge; // amount of edges unsigned edges; }; template struct DynamicEdge { NodeIterator target; EdgeDataT data; }; } template class DynamicGraph { public: using EdgeData = EdgeDataT; using NodeIterator = std::uint32_t; using EdgeIterator = std::uint32_t; using EdgeRange = range; using Node = detail::DynamicNode; using Edge = detail::DynamicEdge; template friend class DynamicGraph; class InputEdge { public: NodeIterator source; NodeIterator target; EdgeDataT data; InputEdge() : source(std::numeric_limits::max()), target(std::numeric_limits::max()) { } template InputEdge(NodeIterator source, NodeIterator target, Ts &&... data) : source(source), target(target), data(std::forward(data)...) { } bool operator<(const InputEdge &rhs) const { return std::tie(source, target) < std::tie(rhs.source, rhs.target); } }; DynamicGraph() : DynamicGraph(0) {} // Constructs an empty graph with a given number of nodes. explicit DynamicGraph(NodeIterator nodes) : number_of_nodes(nodes), number_of_edges(0) { node_array.reserve(number_of_nodes); node_array.resize(number_of_nodes); edge_list.reserve(number_of_nodes * 1.1); edge_list.resize(number_of_nodes); } /** * Constructs a DynamicGraph from a list of edges sorted by source node id. */ template DynamicGraph(const NodeIterator nodes, const ContainerT &graph) { // we need to cast here because DeallocatingVector does not have a valid const iterator BOOST_ASSERT(std::is_sorted(const_cast(graph).begin(), const_cast(graph).end())); number_of_nodes = nodes; number_of_edges = static_cast(graph.size()); node_array.resize(number_of_nodes); EdgeIterator edge = 0; EdgeIterator position = 0; for (const auto node : irange(0u, number_of_nodes)) { EdgeIterator last_edge = edge; while (edge < number_of_edges && graph[edge].source == node) { ++edge; } node_array[node].first_edge = position; node_array[node].edges = edge - last_edge; position += node_array[node].edges; } edge_list.reserve(static_cast(edge_list.size() * 1.1)); edge_list.resize(position); edge = 0; for (const auto node : irange(0u, number_of_nodes)) { for (const auto i : irange(node_array[node].first_edge, node_array[node].first_edge + node_array[node].edges)) { edge_list[i].target = graph[edge].target; BOOST_ASSERT(edge_list[i].target < number_of_nodes); edge_list[i].data = graph[edge].data; ++edge; } } BOOST_ASSERT(node_array.size() == number_of_nodes); } // Copy&move for the same data // DynamicGraph(const DynamicGraph &other) { number_of_nodes = other.number_of_nodes; // atomics can't be moved this is why we need an own constructor number_of_edges = static_cast(other.number_of_edges); node_array = other.node_array; edge_list = other.edge_list; } DynamicGraph &operator=(const DynamicGraph &other) { auto copy_other = other; *this = std::move(other); return *this; } DynamicGraph(DynamicGraph &&other) { number_of_nodes = other.number_of_nodes; // atomics can't be moved this is why we need an own constructor number_of_edges = static_cast(other.number_of_edges); node_array = std::move(other.node_array); edge_list = std::move(other.edge_list); } DynamicGraph &operator=(DynamicGraph &&other) { number_of_nodes = other.number_of_nodes; // atomics can't be moved this is why we need an own constructor number_of_edges = static_cast(other.number_of_edges); node_array = std::move(other.node_array); edge_list = std::move(other.edge_list); return *this; } // Removes all edges to and from nodes for which filter(node_id) returns false template auto Filter(Pred filter) const & { BOOST_ASSERT(node_array.size() == number_of_nodes); DynamicGraph other; other.number_of_nodes = number_of_nodes; other.number_of_edges = static_cast(number_of_edges); other.edge_list.reserve(edge_list.size()); other.node_array.resize(node_array.size()); NodeID node_id = 0; std::transform( node_array.begin(), node_array.end(), other.node_array.begin(), [&](const Node &node) { const EdgeIterator first_edge = other.edge_list.size(); BOOST_ASSERT(node_id < number_of_nodes); if (filter(node_id++)) { std::copy_if(edge_list.begin() + node.first_edge, edge_list.begin() + node.first_edge + node.edges, std::back_inserter(other.edge_list), [&](const auto &edge) { return filter(edge.target); }); const unsigned num_edges = other.edge_list.size() - first_edge; return Node{first_edge, num_edges}; } else { return Node{first_edge, 0}; } }); return other; } unsigned GetNumberOfNodes() const { return number_of_nodes; } unsigned GetNumberOfEdges() const { return number_of_edges; } auto GetEdgeCapacity() const { return edge_list.size(); } unsigned GetOutDegree(const NodeIterator n) const { return node_array[n].edges; } unsigned GetDirectedOutDegree(const NodeIterator n) const { unsigned degree = 0; for (const auto edge : irange(BeginEdges(n), EndEdges(n))) { if (!GetEdgeData(edge).reversed) { ++degree; } } return degree; } NodeIterator GetTarget(const EdgeIterator e) const { return NodeIterator(edge_list[e].target); } void SetTarget(const EdgeIterator e, const NodeIterator n) { edge_list[e].target = n; } EdgeDataT &GetEdgeData(const EdgeIterator e) { return edge_list[e].data; } const EdgeDataT &GetEdgeData(const EdgeIterator e) const { return edge_list[e].data; } EdgeIterator BeginEdges(const NodeIterator n) const { return EdgeIterator(node_array[n].first_edge); } EdgeIterator EndEdges(const NodeIterator n) const { return EdgeIterator(node_array[n].first_edge + node_array[n].edges); } EdgeRange GetAdjacentEdgeRange(const NodeIterator node) const { return irange(BeginEdges(node), EndEdges(node)); } NodeIterator InsertNode() { node_array.emplace_back(node_array.back()); number_of_nodes += 1; return number_of_nodes; } // adds an edge. Invalidates edge iterators for the source node EdgeIterator InsertEdge(const NodeIterator from, const NodeIterator to, const EdgeDataT &data) { Node &node = node_array[from]; EdgeIterator one_beyond_last_of_node = node.edges + node.first_edge; // if we can't write at the end of this nodes edges // that is: the end is the end of the edge_list, // or the beginning of the next nodes edges if (one_beyond_last_of_node == edge_list.size() || !isDummy(one_beyond_last_of_node)) { // can we write before this nodes edges? if (node.first_edge != 0 && isDummy(node.first_edge - 1)) { node.first_edge--; edge_list[node.first_edge] = edge_list[node.first_edge + node.edges]; } else { // we have to move this nodes edges to the end of the edge_list EdgeIterator newFirstEdge = (EdgeIterator)edge_list.size(); unsigned newSize = node.edges * 1.1 + 2; EdgeIterator requiredCapacity = newSize + edge_list.size(); EdgeIterator oldCapacity = edge_list.capacity(); // make sure there is enough space at the end if (requiredCapacity >= oldCapacity) { edge_list.reserve(requiredCapacity * 1.1); } edge_list.resize(edge_list.size() + newSize); // move the edges over and invalidate the old ones for (const auto i : irange(0u, node.edges)) { edge_list[newFirstEdge + i] = edge_list[node.first_edge + i]; makeDummy(node.first_edge + i); } // invalidate until the end of edge_list for (const auto i : irange(node.edges + 1, newSize)) { makeDummy(newFirstEdge + i); } node.first_edge = newFirstEdge; } } // get the position for the edge that is to be inserted // and write it Edge &edge = edge_list[node.first_edge + node.edges]; edge.target = to; edge.data = data; ++number_of_edges; ++node.edges; return EdgeIterator(node.first_edge + node.edges); } // removes an edge. Invalidates edge iterators for the source node void DeleteEdge(const NodeIterator source, const EdgeIterator e) { Node &node = node_array[source]; --number_of_edges; --node.edges; BOOST_ASSERT(std::numeric_limits::max() != node.edges); const unsigned last = node.first_edge + node.edges; BOOST_ASSERT(std::numeric_limits::max() != last); // swap with last edge edge_list[e] = edge_list[last]; makeDummy(last); } // removes all edges (source,target) int32_t DeleteEdgesTo(const NodeIterator source, const NodeIterator target) { int32_t deleted = 0; for (EdgeIterator i = BeginEdges(source), iend = EndEdges(source); i < iend - deleted; ++i) { if (edge_list[i].target == target) { do { deleted++; edge_list[i] = edge_list[iend - deleted]; makeDummy(iend - deleted); } while (i < iend - deleted && edge_list[i].target == target); } } number_of_edges -= deleted; node_array[source].edges -= deleted; return deleted; } // searches for a specific edge EdgeIterator FindEdge(const NodeIterator from, const NodeIterator to) const { for (const auto i : irange(BeginEdges(from), EndEdges(from))) { if (to == edge_list[i].target) { return i; } } return SPECIAL_EDGEID; } // searches for a specific edge EdgeIterator FindSmallestEdge(const NodeIterator from, const NodeIterator to) const { EdgeIterator smallest_edge = SPECIAL_EDGEID; EdgeWeight smallest_weight = INVALID_EDGE_WEIGHT; for (auto edge : GetAdjacentEdgeRange(from)) { const NodeID target = GetTarget(edge); const EdgeWeight weight = GetEdgeData(edge).distance; if (target == to && weight < smallest_weight) { smallest_edge = edge; smallest_weight = weight; } } return smallest_edge; } EdgeIterator FindEdgeInEitherDirection(const NodeIterator from, const NodeIterator to) const { EdgeIterator tmp = FindEdge(from, to); return (SPECIAL_NODEID != tmp ? tmp : FindEdge(to, from)); } EdgeIterator FindEdgeIndicateIfReverse(const NodeIterator from, const NodeIterator to, bool &result) const { EdgeIterator current_iterator = FindEdge(from, to); if (SPECIAL_NODEID == current_iterator) { current_iterator = FindEdge(to, from); if (SPECIAL_NODEID != current_iterator) { result = true; } } return current_iterator; } void Renumber(const std::vector &old_to_new_node) { // permutate everything but the sentinel util::inplacePermutation(node_array.begin(), node_array.end(), old_to_new_node); // Build up edge permutation if (edge_list.size() >= std::numeric_limits::max()) { throw util::exception("There are too many edges, OSRM only supports 2^32" + SOURCE_REF); } EdgeID new_edge_index = 0; std::vector old_to_new_edge(edge_list.size(), SPECIAL_EDGEID); for (auto node : util::irange(0, number_of_nodes)) { auto new_first_edge = new_edge_index; // move all filled edges for (auto edge : GetAdjacentEdgeRange(node)) { edge_list[edge].target = old_to_new_node[edge_list[edge].target]; BOOST_ASSERT(edge_list[edge].target != SPECIAL_NODEID); old_to_new_edge[edge] = new_edge_index++; } node_array[node].first_edge = new_first_edge; } auto number_of_valid_edges = new_edge_index; // move all dummy edges to the end of the renumbered range for (auto edge : util::irange(0, edge_list.size())) { if (old_to_new_edge[edge] == SPECIAL_EDGEID) { BOOST_ASSERT(isDummy(edge)); old_to_new_edge[edge] = new_edge_index++; } } BOOST_ASSERT(std::find(old_to_new_edge.begin(), old_to_new_edge.end(), SPECIAL_EDGEID) == old_to_new_edge.end()); util::inplacePermutation(edge_list.begin(), edge_list.end(), old_to_new_edge); // Remove useless dummy nodes at the end edge_list.resize(number_of_valid_edges); number_of_edges = number_of_valid_edges; } protected: bool isDummy(const EdgeIterator edge) const { return edge_list[edge].target == (std::numeric_limits::max)(); } void makeDummy(const EdgeIterator edge) { edge_list[edge].target = (std::numeric_limits::max)(); } NodeIterator number_of_nodes; std::atomic_uint number_of_edges; std::vector node_array; DeallocatingVector edge_list; }; } } #endif // DYNAMICGRAPH_HPP