#pragma once #include #include #include #include #include #include namespace mapbox { namespace cheap_ruler { using box = geometry::box; using line_string = geometry::line_string; using linear_ring = geometry::linear_ring; using multi_line_string = geometry::multi_line_string; using point = geometry::point; using polygon = geometry::polygon; class CheapRuler { public: enum Unit { Kilometers, Miles, NauticalMiles, Meters, Metres = Meters, Yards, Feet, Inches }; // // A collection of very fast approximations to common geodesic measurements. Useful // for performance-sensitive code that measures things on a city scale. Point coordinates // are in the [x = longitude, y = latitude] form. // explicit CheapRuler(double latitude, Unit unit = Kilometers) { double m = 0.; switch (unit) { case Kilometers: m = 1.; break; case Miles: m = 1000. / 1609.344; break; case NauticalMiles: m = 1000. / 1852.; break; case Meters: m = 1000.; break; case Yards: m = 1000. / 0.9144; break; case Feet: m = 1000. / 0.3048; break; case Inches: m = 1000. / 0.0254; break; } auto cos = std::cos(latitude * M_PI / 180.); auto cos2 = 2. * cos * cos - 1.; auto cos3 = 2. * cos * cos2 - cos; auto cos4 = 2. * cos * cos3 - cos2; auto cos5 = 2. * cos * cos4 - cos3; // multipliers for converting longitude and latitude // degrees into distance (http://1.usa.gov/1Wb1bv7) kx = m * (111.41513 * cos - 0.09455 * cos3 + 0.00012 * cos5); ky = m * (111.13209 - 0.56605 * cos2 + 0.0012 * cos4); } static CheapRuler fromTile(uint32_t y, uint32_t z) { double n = M_PI * (1. - 2. * (y + 0.5) / std::pow(2., z)); double latitude = std::atan(0.5 * (std::exp(n) - std::exp(-n))) * 180. / M_PI; return CheapRuler(latitude); } // // Given two points of the form [x = longitude, y = latitude], returns the distance. // double distance(point a, point b) { auto dx = (a.x - b.x) * kx; auto dy = (a.y - b.y) * ky; return std::sqrt(dx * dx + dy * dy); } // // Returns the bearing between two points in angles. // double bearing(point a, point b) { auto dx = (b.x - a.x) * kx; auto dy = (b.y - a.y) * ky; if (!dx && !dy) { return 0.; } auto value = std::atan2(dx, dy) * 180. / M_PI; if (value > 180.) { value -= 360.; } return value; } // // Returns a new point given distance and bearing from the starting point. // point destination(point origin, double dist, double bearing_) { auto a = (90. - bearing_) * M_PI / 180.; return offset(origin, std::cos(a) * dist, std::sin(a) * dist); } // // Returns a new point given easting and northing offsets from the starting point. // point offset(point origin, double dx, double dy) { return point(origin.x + dx / kx, origin.y + dy / ky); } // // Given a line (an array of points), returns the total line distance. // double lineDistance(const line_string& points) { double total = 0.; for (unsigned i = 0; i < points.size() - 1; ++i) { total += distance(points[i], points[i + 1]); } return total; } // // Given a polygon (an array of rings, where each ring is an array of points), // returns the area. // double area(polygon poly) { double sum = 0.; for (unsigned i = 0; i < poly.size(); ++i) { auto& ring = poly[i]; for (unsigned j = 0, len = ring.size(), k = len - 1; j < len; k = j++) { sum += (ring[j].x - ring[k].x) * (ring[j].y + ring[k].y) * (i ? -1. : 1.); } } return (std::abs(sum) / 2.) * kx * ky; } // // Returns the point at a specified distance along the line. // point along(const line_string& line, double dist) { double sum = 0.; if (dist <= 0.) { return line[0]; } for (unsigned i = 0; i < line.size() - 1; ++i) { auto p0 = line[i]; auto p1 = line[i + 1]; auto d = distance(p0, p1); sum += d; if (sum > dist) { return interpolate(p0, p1, (dist - (sum - d)) / d); } } return line[line.size() - 1]; } // // Returns a tuple of the form where point is closest point on the line // from the given point, index is the start index of the segment with the closest point, // and t is a parameter from 0 to 1 that indicates where the closest point is on that segment. // std::tuple pointOnLine(const line_string& line, point p) { double minDist = std::numeric_limits::infinity(); double minX = 0., minY = 0., minI = 0., minT = 0.; for (unsigned i = 0; i < line.size() - 1; ++i) { auto t = 0.; auto x = line[i].x; auto y = line[i].y; auto dx = (line[i + 1].x - x) * kx; auto dy = (line[i + 1].y - y) * ky; if (dx != 0. || dy != 0.) { t = ((p.x - x) * kx * dx + (p.y - y) * ky * dy) / (dx * dx + dy * dy); if (t > 1) { x = line[i + 1].x; y = line[i + 1].y; } else if (t > 0) { x += (dx / kx) * t; y += (dy / ky) * t; } } dx = (p.x - x) * kx; dy = (p.y - y) * ky; auto sqDist = dx * dx + dy * dy; if (sqDist < minDist) { minDist = sqDist; minX = x; minY = y; minI = i; minT = t; } } return std::make_tuple( point(minX, minY), minI, ::fmax(0., ::fmin(1., minT))); } // // Returns a part of the given line between the start and the stop points (or their closest // points on the line). // line_string lineSlice(point start, point stop, const line_string& line) { auto getPoint = [](auto tuple) { return std::get<0>(tuple); }; auto getIndex = [](auto tuple) { return std::get<1>(tuple); }; auto getT = [](auto tuple) { return std::get<2>(tuple); }; auto p1 = pointOnLine(line, start); auto p2 = pointOnLine(line, stop); if (getIndex(p1) > getIndex(p2) || (getIndex(p1) == getIndex(p2) && getT(p1) > getT(p2))) { auto tmp = p1; p1 = p2; p2 = tmp; } line_string slice = { getPoint(p1) }; auto l = getIndex(p1) + 1; auto r = getIndex(p2); if (line[l] != slice[0] && l <= r) { slice.push_back(line[l]); } for (unsigned i = l + 1; i <= r; ++i) { slice.push_back(line[i]); } if (line[r] != getPoint(p2)) { slice.push_back(getPoint(p2)); } return slice; }; // // Returns a part of the given line between the start and the stop points // indicated by distance along the line. // line_string lineSliceAlong(double start, double stop, const line_string& line) { double sum = 0.; line_string slice; for (unsigned i = 0; i < line.size() - 1; ++i) { auto p0 = line[i]; auto p1 = line[i + 1]; auto d = distance(p0, p1); sum += d; if (sum > start && slice.size() == 0) { slice.push_back(interpolate(p0, p1, (start - (sum - d)) / d)); } if (sum >= stop) { slice.push_back(interpolate(p0, p1, (stop - (sum - d)) / d)); return slice; } if (sum > start) { slice.push_back(p1); } } return slice; }; // // Given a point, returns a bounding box object ([w, s, e, n]) // created from the given point buffered by a given distance. // box bufferPoint(point p, double buffer) { auto v = buffer / ky; auto h = buffer / kx; return box( point(p.x - h, p.y - v), point(p.x + h, p.y + v) ); } // // Given a bounding box, returns the box buffered by a given distance. // box bufferBBox(box bbox, double buffer) { auto v = buffer / ky; auto h = buffer / kx; return box( point(bbox.min.x - h, bbox.min.y - v), point(bbox.max.x + h, bbox.max.y + v) ); } // // Returns true if the given point is inside in the given bounding box, otherwise false. // bool insideBBox(point p, box bbox) { return p.x >= bbox.min.x && p.x <= bbox.max.x && p.y >= bbox.min.y && p.y <= bbox.max.y; } static point interpolate(point a, point b, double t) { double dx = b.x - a.x; double dy = b.y - a.y; return point(a.x + dx * t, a.y + dy * t); } private: double ky; double kx; }; } // namespace cheap_ruler } // namespace mapbox