extern crate rsrl; use rand::{rngs::StdRng, SeedableRng}; use rsrl::{ control::td::GreedyGQ, domains::{Domain, MountainCar}, fa::linear::{ basis::{Combinators, Fourier}, optim::SGD, LFA, }, make_shared, policies::{EpsilonGreedy, Greedy, Policy, Random}, spaces::Space, Enumerable, Handler, }; fn main() { let env = MountainCar::default(); let n_actions = env.action_space().card().into(); let mut rng = StdRng::seed_from_u64(0); let mut agent = { let basis = Fourier::from_space(3, env.state_space()).with_bias(); let fa_q = make_shared(LFA::vector(basis.clone(), SGD(0.1), n_actions)); let fa_td = LFA::vector(basis, SGD(0.001), n_actions); let policy = EpsilonGreedy::new(Greedy::new(fa_q.clone()), Random::new(n_actions), 0.1); GreedyGQ { fa_q, fa_td, behaviour_policy: policy, gamma: 0.99, } }; for e in 0..200 { // Episode loop: let mut j = 0; let mut env = MountainCar::default(); let mut action = agent.behaviour_policy.sample(&mut rng, env.emit().state()); for i in 0..1000 { // Trajectory loop: j = i; let t = env.transition(action); agent.handle(&t).ok(); action = agent.behaviour_policy.sample(&mut rng, t.to.state()); if t.terminated() { break; } } println!("Batch {}: {} steps...", e + 1, j + 1); } let traj = MountainCar::default().rollout(|s| agent.fa_q.find_max((s,)).0, Some(500)); println!("OOS: {} states...", traj.n_states()); }