extern crate rsrl; use rand::thread_rng; use rsrl::{ control::{nac::NAC, td::SARSA}, domains::{Domain, MountainCar}, fa::{ linear::{ basis::{Combinators, Fourier, SCB}, optim::SGD, LFA, }, transforms::Softplus, Composition, }, make_shared, policies::{Policy, Softmax}, Differentiable, Handler, }; use spaces::{BoundedSpace, Space}; fn main() { let domain = MountainCar::default(); let n_actions = domain.action_space().card().into(); let limits = domain .state_space() .into_iter() .map(|d| (d.inf().unwrap(), d.sup().unwrap())) .collect(); let basis = Fourier::new(3, limits).with_bias(); let lfa = LFA::vector(basis.clone(), SGD(1.0), n_actions); let policy = make_shared(Softmax::new(lfa, 1.0)); let critic = { let optimiser = SGD(0.01); let basis_c = SCB { policy: policy.clone(), basis, }; let cfa = LFA::scalar(basis_c, optimiser); SARSA { q_func: cfa, policy: policy.clone(), gamma: 0.999, } }; let mut rng = thread_rng(); let mut agent = NAC::new(critic, policy, 0.01); for e in 0..1000 { // Episode loop: let mut env = MountainCar::default(); let mut action = agent.policy.sample(&mut rng, env.emit().state()); let mut total_reward = 0.0; for i in 0..1000 { // Trajectory loop: let t = env.transition(action); agent.critic.handle(&t).ok(); action = agent.policy.sample(&mut rng, t.to.state()); total_reward += t.reward; if i % 100 == 0 { agent.handle(()).ok(); } if t.terminated() { break; } } println!("Batch {}: {}", e + 1, total_reward); } let traj = MountainCar::default().rollout(|s| agent.policy.mode(s), Some(1000)); println!("OOS: {}...", traj.total_reward()); }