//# Matrix.h: A 2-D Specialization of the Array Class
//# Copyright (C) 1993,1994,1995,1996,1999,2000,2001,2003
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//# Internet email: aips2-request@nrao.edu.
//# Postal address: AIPS++ Project Office
//# National Radio Astronomy Observatory
//# 520 Edgemont Road
//# Charlottesville, VA 22903-2475 USA
//#
//# $Id$
#ifndef CASA_MATRIX_2_H
#define CASA_MATRIX_2_H
//# Includes
#include "Array.h"
namespace casacore { //#Begin casa namespace
// A 2-D Specialization of the Array class
//
//
//
// Matrix objects are two-dimensional specializations (e.g., more convenient
// and efficient indexing) of the general Array class. You might also want
// to look at the Array documentation to see inherited functionality. A
// tutorial on using the array classes in general is available in the
// "AIPS++ Programming Manual".
//
// Generally the member functions of Array are also available in
// Matrix versions which take a pair of integers where the array
// needs an IPosition. Since the Matrix
// is two-dimensional, the IPositions are overkill, although you may
// use those versions if you want to.
//
// Matrix mi(100,100); // Shape is 100x100
// mi.resize(50,50); // Shape now 50x50
//
//
// Slices may be taken with the Slice class. To take a slice, one "indexes"
// with one Slice(start, length, inc) for each axis,
// where end and inc are optional.
// Additionally, there are row(), column() and diagonal()
// member functions which return Vector's which refer to the storage back
// in the Matrix:
//
// Matrix mf(100, 100);
// mf.diagonal() = 1;
//
//
// Correct indexing order of a matrix is:
//
// Matrix mi(n1,n2) // [nrow, ncolumn]
// for (size_t j=0; j
//
//
// Element-by-element arithmetic and logical operations are available (in
// aips/ArrayMath.h and aips/ArrayLogical.h). Other Matrix operations (e.g.
// LU decomposition) are available, and more appear periodically.
//
// As with the Arrays, if the preprocessor symbol AIPS_DEBUG is
// defined at compile time invariants will be checked on entry to most
// member functions. Additionally, if AIPS_ARRAY_INDEX_CHECK is defined
// index operations will be bounds-checked. Neither of these should
// be defined for production code.
template class Matrix : public Array
{
public:
// A Matrix of length zero in each dimension; zero origin.
Matrix(const Alloc& allocator = Alloc());
// A Matrix with "l1" rows and "l2" columns.
// Fill it with the initial value.
Matrix(size_t l1, size_t l2, const T &initialValue = T(), const Alloc& allocator = Alloc());
// An uninitialized Matrix with "l1" rows and "l2" columns.
Matrix(size_t l1, size_t l2, typename Array::uninitializedType, const Alloc& allocator = Alloc());
// A matrix of shape with shape "len".
// Fill it with the initial value.
Matrix(const IPosition &len, const T &initialValue = T(), const Alloc& allocator = Alloc());
// An uninitialized matrix of shape with shape "len".
Matrix(const IPosition &len, typename Array::uninitializedType, const Alloc& allocator = Alloc());
// The copy/move constructor uses reference semantics.
Matrix(const Matrix& source);
Matrix(Matrix&& source);
// Construct a Matrix by reference from "source". "source must have
// ndim() of 2 or less.
Matrix(const Array& source);
Matrix(Array&& source);
// Create an Matrix of a given shape from a pointer.
Matrix(const IPosition &shape, T *storage, StorageInitPolicy policy = COPY, const Alloc& allocator = Alloc());
// Create an Matrix of a given shape from a pointer. Because the pointer
// is const, a copy is always made.
Matrix(const IPosition &shape, const T *storage);
// Create an identity matrix of side length n. (Could not do this as a constructor
// because of ambiguities with other constructors).
static Matrix identity (size_t n);
// Resize to the given shape
//
using Array::resize;
void resize(size_t nx, size_t ny, bool copyValues=false);
//
Matrix& operator=(const Matrix& source)
{ return assign_conforming(source); }
Matrix& operator=(Matrix&& source)
{ return assign_conforming(std::move(source)); }
Matrix& operator=(const Array& source)
{ return assign_conforming(source); }
Matrix& operator=(Array&& source)
{ return assign_conforming(std::move(source)); }
// Copy the values from other to this Matrix. If this matrix has zero
// elements then it will resize to be the same shape as other; otherwise
// other must conform to this.
// Note that the assign function can be used to assign a
// non-conforming matrix.
//
Matrix& assign_conforming(const Matrix& source)
{ Array::assign_conforming(source); return *this; }
Matrix& assign_conforming(Matrix&& source)
{ Array::assign_conforming(std::move(source)); return *this; }
Matrix& assign_conforming(const Array& source)
{
// TODO Should be supported by the Array class,
// see Cube::operator=(const Array&)
if (source.ndim() == 2) {
Array::assign_conforming(source);
} else {
// This might work if a.ndim == 1 or 2
(*this) = Matrix(source);
}
return *this;
}
Matrix& assign_conforming(Array&& source)
{
if (source.ndim() == 2) {
Array::assign_conforming(std::move(source));
} else {
(*this) = Matrix(std::move(source));
}
return *this;
}
//
// Copy val into every element of this Matrix; i.e. behaves as if
// val were a constant conformant matrix.
Array& operator=(const T &val)
{ return Array::operator=(val); }
// Copy to this those values in marray whose corresponding elements
// in marray's mask are true.
Matrix& assign_conforming (const MaskedArray &marray)
{ Array::assign_conforming(marray); return *this; }
// Single-pixel addressing. If AIPS_ARRAY_INDEX_CHECK is defined,
// bounds checking is performed.
//
T &operator()(const IPosition &i)
{ return Array::operator()(i); }
const T &operator()(const IPosition &i) const
{ return Array::operator()(i); }
T &operator()(size_t i1, size_t i2)
{
return this->contiguous_p ? this->begin_p[i1 + i2*yinc()] :
this->begin_p[i1*xinc() + i2*yinc()];
}
const T &operator()(size_t i1, size_t i2) const
{
return this->contiguous_p ? this->begin_p[i1 + i2*yinc()] :
this->begin_p[i1*xinc() + i2*yinc()];
}
//
// The array is masked by the input LogicalArray.
// This mask must conform to the array.
//
// Return a MaskedArray.
MaskedArray operator() (const LogicalArray &mask) const
{ return Array::operator() (mask); }
// Return a MaskedArray.
MaskedArray operator() (const LogicalArray &mask)
{ return Array::operator() (mask); }
//
// The array is masked by the input MaskedLogicalArray.
// The mask is effectively the AND of the internal LogicalArray
// and the internal mask of the MaskedLogicalArray.
// The MaskedLogicalArray must conform to the array.
//
// Return a MaskedArray.
MaskedArray operator() (const MaskedLogicalArray &mask) const
{ return Array::operator() (mask); }
// Return a MaskedArray.
MaskedArray operator() (const MaskedLogicalArray &mask)
{ return Array::operator() (mask); }
//
// Returns a reference to the i'th row.
//
Vector row(size_t i);
const Vector row(size_t i) const;
//
// Returns a reference to the j'th column
//
Vector column(size_t j);
const Vector column(size_t j) const;
//
// Returns a diagonal from the Matrix. The Matrix must be square.
// n==0 is the main diagonal. n>0 is above the main diagonal, n<0
// is below it.
//
Vector diagonal(long long n=0);
const Vector diagonal(long long n=0) const;
//
// Take a slice of this matrix. Slices are always indexed starting
// at zero. This uses reference semantics, i.e. changing a value
// in the slice changes the original.
//
// Matrix vd(100,100);
// //...
// vd(Slice(0,10),Slice(10,10)) = -1.0; // 10x10 sub-matrix set to -1.0
//
//
Matrix operator()(const Slice &sliceX, const Slice &sliceY);
const Matrix operator()(const Slice &sliceX, const Slice &sliceY) const;
//
// Slice using IPositions. Required to be defined, otherwise the base
// class versions are hidden.
//
Array operator()(const IPosition &blc, const IPosition &trc,
const IPosition &incr)
{ return Array::operator()(blc,trc,incr); }
const Array operator()(const IPosition &blc, const IPosition &trc,
const IPosition &incr) const
{ return Array::operator()(blc,trc,incr); }
Array operator()(const IPosition &blc, const IPosition &trc)
{ return Array::operator()(blc,trc); }
const Array operator()(const IPosition &blc, const IPosition &trc) const
{ return Array::operator()(blc,trc); }
Array operator()(const Slicer& slicer)
{ return Array::operator()(slicer); }
const Array operator()(const Slicer& slicer) const
{ return Array::operator()(slicer); }
//
// The length of each axis of the Matrix.
const IPosition &shape() const
{ return this->length_p; }
void shape(int &s1, int &s2) const
{ s1 = this->length_p(0); s2=this->length_p(1); }
// The number of rows in the Matrix, i.e. the length of the first axis.
size_t nrow() const
{ return this->length_p(0); }
// The number of columns in the Matrix, i.e. the length of the 2nd axis.
size_t ncolumn() const
{ return this->length_p(1); }
// Checks that the Matrix is consistent (invariants check out).
virtual bool ok() const override;
protected:
virtual void preTakeStorage(const IPosition &shape) override;
// Remove the degenerate axes from other and store result in this matrix.
// An exception is thrown if removing degenerate axes does not result
// in a matrix.
virtual void doNonDegenerate(const Array &other,
const IPosition &ignoreAxes) override;
virtual size_t fixedDimensionality() const override { return 2; }
private:
// Cached constants to improve indexing.
// size_t xinc_p, yinc_p;
size_t xinc() const { return this->inc_p(0); }
size_t yinc() const { return this->inc_p(1)*this->originalLength_p(0); }
};
//# Declare extern templates for often used types.
extern template class Matrix;
extern template class Matrix;
extern template class Matrix;
} //#End casa namespace
#include "Matrix.tcc"
#endif