#include "float_math.h" #include #include #include #include /*---------------------------------------------------------------------- Copyright (c) 2004 Open Dynamics Framework Group www.physicstools.org All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the Open Dynamics Framework Group nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -----------------------------------------------------------------------*/ // http://codesuppository.blogspot.com // // mailto: jratcliff@infiniplex.net // // http://www.amillionpixels.us // #include "ConvexDecomposition.h" #include "cd_vector.h" #include "cd_hull.h" #include "bestfit.h" #include "planetri.h" #include "vlookup.h" #include "splitplane.h" #include "meshvolume.h" #include "concavity.h" #include "bestfitobb.h" #include "float_math.h" #include "fitsphere.h" #define SHOW_MESH 0 #define MAKE_MESH 1 using namespace ConvexDecomposition; namespace ConvexDecomposition { class FaceTri { public: FaceTri(void){}; FaceTri(const float *vertices, unsigned int i1, unsigned int i2, unsigned int i3) { mP1.Set(&vertices[i1 * 3]); mP2.Set(&vertices[i2 * 3]); mP3.Set(&vertices[i3 * 3]); } Vector3d mP1; Vector3d mP2; Vector3d mP3; Vector3d mNormal; }; void addTri(VertexLookup vl, UintVector &list, const Vector3d &p1, const Vector3d &p2, const Vector3d &p3) { unsigned int i1 = Vl_getIndex(vl, p1.Ptr()); unsigned int i2 = Vl_getIndex(vl, p2.Ptr()); unsigned int i3 = Vl_getIndex(vl, p3.Ptr()); // do *not* process degenerate triangles! if (i1 != i2 && i1 != i3 && i2 != i3) { list.push_back(i1); list.push_back(i2); list.push_back(i3); } } void calcConvexDecomposition(unsigned int vcount, const float *vertices, unsigned int tcount, const unsigned int *indices, ConvexDecompInterface *callback, float masterVolume, unsigned int depth) { float plane[4]; bool split = false; if (depth < MAXDEPTH) { float volume; float c = computeConcavity(vcount, vertices, tcount, indices, callback, plane, volume); if (depth == 0) { masterVolume = volume; } float percent = (c * 100.0f) / masterVolume; if (percent > CONCAVE_PERCENT) // if great than 5% of the total volume is concave, go ahead and keep splitting. { split = true; } } if (depth >= MAXDEPTH || !split) { #if 1 HullResult result; HullLibrary hl; HullDesc desc; desc.SetHullFlag(QF_TRIANGLES); desc.mVcount = vcount; desc.mVertices = vertices; desc.mVertexStride = sizeof(float) * 3; HullError ret = hl.CreateConvexHull(desc, result); if (ret == QE_OK) { ConvexResult r(result.mNumOutputVertices, result.mOutputVertices, result.mNumFaces, result.mIndices); callback->ConvexDecompResult(r); } #else static unsigned int colors[8] = { 0xFF0000, 0x00FF00, 0x0000FF, 0xFFFF00, 0x00FFFF, 0xFF00FF, 0xFFFFFF, 0xFF8040}; static int count = 0; count++; if (count == 8) count = 0; assert(count >= 0 && count < 8); unsigned int color = colors[count]; const unsigned int *source = indices; for (unsigned int i = 0; i < tcount; i++) { unsigned int i1 = *source++; unsigned int i2 = *source++; unsigned int i3 = *source++; FaceTri t(vertices, i1, i2, i3); callback->ConvexDebugTri(t.mP1.Ptr(), t.mP2.Ptr(), t.mP3.Ptr(), color); } #endif hl.ReleaseResult(result); return; } UintVector ifront; UintVector iback; VertexLookup vfront = Vl_createVertexLookup(); VertexLookup vback = Vl_createVertexLookup(); bool showmesh = false; #if SHOW_MESH showmesh = true; #endif if (0) { showmesh = true; for (float x = -1; x < 1; x += 0.10f) { for (float y = 0; y < 1; y += 0.10f) { for (float z = -1; z < 1; z += 0.04f) { float d = x * plane[0] + y * plane[1] + z * plane[2] + plane[3]; Vector3d p(x, y, z); if (d >= 0) callback->ConvexDebugPoint(p.Ptr(), 0.02f, 0x00FF00); else callback->ConvexDebugPoint(p.Ptr(), 0.02f, 0xFF0000); } } } } if (1) { // ok..now we are going to 'split' all of the input triangles against this plane! const unsigned int *source = indices; for (unsigned int i = 0; i < tcount; i++) { unsigned int i1 = *source++; unsigned int i2 = *source++; unsigned int i3 = *source++; FaceTri t(vertices, i1, i2, i3); Vector3d front[4]; Vector3d back[4]; unsigned int fcount = 0; unsigned int bcount = 0; PlaneTriResult result; result = planeTriIntersection(plane, t.mP1.Ptr(), sizeof(Vector3d), 0.00001f, front[0].Ptr(), fcount, back[0].Ptr(), bcount); if (fcount > 4 || bcount > 4) { result = planeTriIntersection(plane, t.mP1.Ptr(), sizeof(Vector3d), 0.00001f, front[0].Ptr(), fcount, back[0].Ptr(), bcount); } switch (result) { case PTR_FRONT: assert(fcount == 3); if (showmesh) callback->ConvexDebugTri(front[0].Ptr(), front[1].Ptr(), front[2].Ptr(), 0x00FF00); #if MAKE_MESH addTri(vfront, ifront, front[0], front[1], front[2]); #endif break; case PTR_BACK: assert(bcount == 3); if (showmesh) callback->ConvexDebugTri(back[0].Ptr(), back[1].Ptr(), back[2].Ptr(), 0xFFFF00); #if MAKE_MESH addTri(vback, iback, back[0], back[1], back[2]); #endif break; case PTR_SPLIT: assert(fcount >= 3 && fcount <= 4); assert(bcount >= 3 && bcount <= 4); #if MAKE_MESH addTri(vfront, ifront, front[0], front[1], front[2]); addTri(vback, iback, back[0], back[1], back[2]); if (fcount == 4) { addTri(vfront, ifront, front[0], front[2], front[3]); } if (bcount == 4) { addTri(vback, iback, back[0], back[2], back[3]); } #endif if (showmesh) { callback->ConvexDebugTri(front[0].Ptr(), front[1].Ptr(), front[2].Ptr(), 0x00D000); callback->ConvexDebugTri(back[0].Ptr(), back[1].Ptr(), back[2].Ptr(), 0xD0D000); if (fcount == 4) { callback->ConvexDebugTri(front[0].Ptr(), front[2].Ptr(), front[3].Ptr(), 0x00D000); } if (bcount == 4) { callback->ConvexDebugTri(back[0].Ptr(), back[2].Ptr(), back[3].Ptr(), 0xD0D000); } } break; } } // ok... here we recursively call if (ifront.size()) { unsigned int vcount = Vl_getVcount(vfront); const float *vertices = Vl_getVertices(vfront); unsigned int tcount = ifront.size() / 3; calcConvexDecomposition(vcount, vertices, tcount, &ifront[0], callback, masterVolume, depth + 1); } ifront.clear(); Vl_releaseVertexLookup(vfront); if (iback.size()) { unsigned int vcount = Vl_getVcount(vback); const float *vertices = Vl_getVertices(vback); unsigned int tcount = iback.size() / 3; calcConvexDecomposition(vcount, vertices, tcount, &iback[0], callback, masterVolume, depth + 1); } iback.clear(); Vl_releaseVertexLookup(vback); } } } // namespace ConvexDecomposition