#include "btMultiBodyTreeCreator.hpp" namespace btInverseDynamics { btMultiBodyTreeCreator::btMultiBodyTreeCreator() : m_initialized(false) {} int btMultiBodyTreeCreator::createFromBtMultiBody(const btMultiBody *btmb, const bool verbose) { if (0x0 == btmb) { bt_id_error_message("cannot create MultiBodyTree from null pointer\n"); return -1; } // in case this is a second call, discard old data m_data.clear(); m_initialized = false; // btMultiBody treats base link separately m_data.resize(1 + btmb->getNumLinks()); // add base link data { LinkData &link = m_data[0]; link.parent_index = -1; if (btmb->hasFixedBase()) { link.joint_type = FIXED; } else { link.joint_type = FLOATING; } btTransform transform = (btmb->getBaseWorldTransform()); //compute inverse dynamics in body-fixed frame transform.setIdentity(); link.parent_r_parent_body_ref(0) = transform.getOrigin()[0]; link.parent_r_parent_body_ref(1) = transform.getOrigin()[1]; link.parent_r_parent_body_ref(2) = transform.getOrigin()[2]; link.body_T_parent_ref(0, 0) = transform.getBasis()[0][0]; link.body_T_parent_ref(0, 1) = transform.getBasis()[0][1]; link.body_T_parent_ref(0, 2) = transform.getBasis()[0][2]; link.body_T_parent_ref(1, 0) = transform.getBasis()[1][0]; link.body_T_parent_ref(1, 1) = transform.getBasis()[1][1]; link.body_T_parent_ref(1, 2) = transform.getBasis()[1][2]; link.body_T_parent_ref(2, 0) = transform.getBasis()[2][0]; link.body_T_parent_ref(2, 1) = transform.getBasis()[2][1]; link.body_T_parent_ref(2, 2) = transform.getBasis()[2][2]; // random unit vector. value not used for fixed or floating joints. link.body_axis_of_motion(0) = 0; link.body_axis_of_motion(1) = 0; link.body_axis_of_motion(2) = 1; link.mass = btmb->getBaseMass(); // link frame in the center of mass link.body_r_body_com(0) = 0; link.body_r_body_com(1) = 0; link.body_r_body_com(2) = 0; // BulletDynamics uses body-fixed frame in the cog, aligned with principal axes link.body_I_body(0, 0) = btmb->getBaseInertia()[0]; link.body_I_body(0, 1) = 0.0; link.body_I_body(0, 2) = 0.0; link.body_I_body(1, 0) = 0.0; link.body_I_body(1, 1) = btmb->getBaseInertia()[1]; link.body_I_body(1, 2) = 0.0; link.body_I_body(2, 0) = 0.0; link.body_I_body(2, 1) = 0.0; link.body_I_body(2, 2) = btmb->getBaseInertia()[2]; // shift reference point to link origin (in joint axis) mat33 tilde_r_com = tildeOperator(link.body_r_body_com); link.body_I_body = link.body_I_body - link.mass * tilde_r_com * tilde_r_com; if (verbose) { id_printf( "base: mass= %f, bt_inertia= [%f %f %f]\n" "Io= [%f %f %f;\n" " %f %f %f;\n" " %f %f %f]\n", link.mass, btmb->getBaseInertia()[0], btmb->getBaseInertia()[1], btmb->getBaseInertia()[2], link.body_I_body(0, 0), link.body_I_body(0, 1), link.body_I_body(0, 2), link.body_I_body(1, 0), link.body_I_body(1, 1), link.body_I_body(1, 2), link.body_I_body(2, 0), link.body_I_body(2, 1), link.body_I_body(2, 2)); } } for (int bt_index = 0; bt_index < btmb->getNumLinks(); bt_index++) { if (verbose) { id_printf("bt->id: converting link %d\n", bt_index); } const btMultibodyLink &bt_link = btmb->getLink(bt_index); LinkData &link = m_data[bt_index + 1]; link.parent_index = bt_link.m_parent + 1; link.mass = bt_link.m_mass; if (verbose) { id_printf("mass= %f\n", link.mass); } // from this body's pivot to this body's com in this body's frame link.body_r_body_com[0] = bt_link.m_dVector[0]; link.body_r_body_com[1] = bt_link.m_dVector[1]; link.body_r_body_com[2] = bt_link.m_dVector[2]; if (verbose) { id_printf("com= %f %f %f\n", link.body_r_body_com[0], link.body_r_body_com[1], link.body_r_body_com[2]); } // BulletDynamics uses a body-fixed frame in the CoM, aligned with principal axes link.body_I_body(0, 0) = bt_link.m_inertiaLocal[0]; link.body_I_body(0, 1) = 0.0; link.body_I_body(0, 2) = 0.0; link.body_I_body(1, 0) = 0.0; link.body_I_body(1, 1) = bt_link.m_inertiaLocal[1]; link.body_I_body(1, 2) = 0.0; link.body_I_body(2, 0) = 0.0; link.body_I_body(2, 1) = 0.0; link.body_I_body(2, 2) = bt_link.m_inertiaLocal[2]; // shift reference point to link origin (in joint axis) mat33 tilde_r_com = tildeOperator(link.body_r_body_com); link.body_I_body = link.body_I_body - link.mass * tilde_r_com * tilde_r_com; if (verbose) { id_printf( "link %d: mass= %f, bt_inertia= [%f %f %f]\n" "Io= [%f %f %f;\n" " %f %f %f;\n" " %f %f %f]\n", bt_index, link.mass, bt_link.m_inertiaLocal[0], bt_link.m_inertiaLocal[1], bt_link.m_inertiaLocal[2], link.body_I_body(0, 0), link.body_I_body(0, 1), link.body_I_body(0, 2), link.body_I_body(1, 0), link.body_I_body(1, 1), link.body_I_body(1, 2), link.body_I_body(2, 0), link.body_I_body(2, 1), link.body_I_body(2, 2)); } // transform for vectors written in parent frame to this link's body-fixed frame btMatrix3x3 basis = btTransform(bt_link.m_zeroRotParentToThis).getBasis(); link.body_T_parent_ref(0, 0) = basis[0][0]; link.body_T_parent_ref(0, 1) = basis[0][1]; link.body_T_parent_ref(0, 2) = basis[0][2]; link.body_T_parent_ref(1, 0) = basis[1][0]; link.body_T_parent_ref(1, 1) = basis[1][1]; link.body_T_parent_ref(1, 2) = basis[1][2]; link.body_T_parent_ref(2, 0) = basis[2][0]; link.body_T_parent_ref(2, 1) = basis[2][1]; link.body_T_parent_ref(2, 2) = basis[2][2]; if (verbose) { id_printf( "body_T_parent_ref= %f %f %f\n" " %f %f %f\n" " %f %f %f\n", basis[0][0], basis[0][1], basis[0][2], basis[1][0], basis[1][1], basis[1][2], basis[2][0], basis[2][1], basis[2][2]); } switch (bt_link.m_jointType) { case btMultibodyLink::eRevolute: link.joint_type = REVOLUTE; if (verbose) { id_printf("type= revolute\n"); } link.body_axis_of_motion(0) = bt_link.m_axes[0].m_topVec[0]; link.body_axis_of_motion(1) = bt_link.m_axes[0].m_topVec[1]; link.body_axis_of_motion(2) = bt_link.m_axes[0].m_topVec[2]; // for revolute joints, m_eVector = parentComToThisPivotOffset // m_dVector = thisPivotToThisComOffset // from parent com to pivot, in parent frame link.parent_r_parent_body_ref(0) = bt_link.m_eVector[0]; link.parent_r_parent_body_ref(1) = bt_link.m_eVector[1]; link.parent_r_parent_body_ref(2) = bt_link.m_eVector[2]; break; case btMultibodyLink::ePrismatic: link.joint_type = PRISMATIC; if (verbose) { id_printf("type= prismatic\n"); } link.body_axis_of_motion(0) = bt_link.m_axes[0].m_bottomVec[0]; link.body_axis_of_motion(1) = bt_link.m_axes[0].m_bottomVec[1]; link.body_axis_of_motion(2) = bt_link.m_axes[0].m_bottomVec[2]; // for prismatic joints, eVector // according to documentation : // parentComToThisComOffset // but seems to be: from parent's com to parent's // pivot ?? // m_dVector = thisPivotToThisComOffset link.parent_r_parent_body_ref(0) = bt_link.m_eVector[0]; link.parent_r_parent_body_ref(1) = bt_link.m_eVector[1]; link.parent_r_parent_body_ref(2) = bt_link.m_eVector[2]; break; case btMultibodyLink::eSpherical: link.joint_type = SPHERICAL; link.parent_r_parent_body_ref(0) = bt_link.m_eVector[0]; link.parent_r_parent_body_ref(1) = bt_link.m_eVector[1]; link.parent_r_parent_body_ref(2) = bt_link.m_eVector[2]; // random unit vector link.body_axis_of_motion(0) = 0; link.body_axis_of_motion(1) = 1; link.body_axis_of_motion(2) = 0; break; case btMultibodyLink::ePlanar: bt_id_error_message("planar joints not implemented\n"); return -1; case btMultibodyLink::eFixed: link.joint_type = FIXED; // random unit vector link.body_axis_of_motion(0) = 0; link.body_axis_of_motion(1) = 0; link.body_axis_of_motion(2) = 1; // for fixed joints, m_dVector = thisPivotToThisComOffset; // m_eVector = parentComToThisPivotOffset; link.parent_r_parent_body_ref(0) = bt_link.m_eVector[0]; link.parent_r_parent_body_ref(1) = bt_link.m_eVector[1]; link.parent_r_parent_body_ref(2) = bt_link.m_eVector[2]; break; default: bt_id_error_message("unknown btMultiBody::eFeatherstoneJointType %d\n", bt_link.m_jointType); return -1; } if (link.parent_index > 0) { // parent body isn't the root const btMultibodyLink &bt_parent_link = btmb->getLink(link.parent_index - 1); // from parent pivot to parent com, in parent frame link.parent_r_parent_body_ref(0) += bt_parent_link.m_dVector[0]; link.parent_r_parent_body_ref(1) += bt_parent_link.m_dVector[1]; link.parent_r_parent_body_ref(2) += bt_parent_link.m_dVector[2]; } else { // parent is root body. btMultiBody only knows 6-DoF or 0-DoF root bodies, // whose link frame is in the CoM (ie, no notion of a pivot point) } if (verbose) { id_printf("parent_r_parent_body_ref= %f %f %f\n", link.parent_r_parent_body_ref[0], link.parent_r_parent_body_ref[1], link.parent_r_parent_body_ref[2]); } } m_initialized = true; return 0; } int btMultiBodyTreeCreator::getNumBodies(int *num_bodies) const { if (false == m_initialized) { bt_id_error_message("btMultiBody not converted yet\n"); return -1; } *num_bodies = static_cast(m_data.size()); return 0; } int btMultiBodyTreeCreator::getBody(const int body_index, int *parent_index, JointType *joint_type, vec3 *parent_r_parent_body_ref, mat33 *body_T_parent_ref, vec3 *body_axis_of_motion, idScalar *mass, vec3 *body_r_body_com, mat33 *body_I_body, int *user_int, void **user_ptr) const { if (false == m_initialized) { bt_id_error_message("MultiBodyTree not created yet\n"); return -1; } if (body_index < 0 || body_index >= static_cast(m_data.size())) { bt_id_error_message("index out of range (got %d but only %zu bodies)\n", body_index, m_data.size()); return -1; } *parent_index = m_data[body_index].parent_index; *joint_type = m_data[body_index].joint_type; *parent_r_parent_body_ref = m_data[body_index].parent_r_parent_body_ref; *body_T_parent_ref = m_data[body_index].body_T_parent_ref; *body_axis_of_motion = m_data[body_index].body_axis_of_motion; *mass = m_data[body_index].mass; *body_r_body_com = m_data[body_index].body_r_body_com; *body_I_body = m_data[body_index].body_I_body; *user_int = -1; *user_ptr = 0x0; return 0; } } // namespace btInverseDynamics