/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ // Collision Radius #define COLLISION_RADIUS 0.0f #include "BenchmarkDemo.h" ///btBulletDynamicsCommon.h is the main Bullet include file, contains most common include files. #include "btBulletDynamicsCommon.h" #include //printf debugging #include "TaruData.h" #include "HaltonData.h" #include "landscapeData.h" #include "BulletCollision/BroadphaseCollision/btDbvtBroadphase.h" #include "BulletCollision/CollisionDispatch/btSimulationIslandManager.h" #include "LinearMath/btAlignedObjectArray.h" #include "LinearMath/btTransform.h" class btDynamicsWorld; #define NUMRAYS 500 #define USE_PARALLEL_RAYCASTS 1 class btRigidBody; class btBroadphaseInterface; class btCollisionShape; class btOverlappingPairCache; class btCollisionDispatcher; class btConstraintSolver; struct btCollisionAlgorithmCreateFunc; class btDefaultCollisionConfiguration; #include "../MultiThreadedDemo/CommonRigidBodyMTBase.h" class BenchmarkDemo : public CommonRigidBodyMTBase { //keep the collision shapes, for deletion/cleanup btAlignedObjectArray m_ragdolls; int m_benchmark; void myinit() { //?? } void setCameraDistance(btScalar dist) { } void createTest1(); void createTest2(); void createTest3(); void createTest4(); void createTest5(); void createTest6(); void createTest7(); void createTest8(); void createWall(const btVector3& offsetPosition, int stackSize, const btVector3& boxSize); void createPyramid(const btVector3& offsetPosition, int stackSize, const btVector3& boxSize); void createTowerCircle(const btVector3& offsetPosition, int stackSize, int rotSize, const btVector3& boxSize); void createLargeMeshBody(); class SpuBatchRaycaster* m_batchRaycaster; class btThreadSupportInterface* m_batchRaycasterThreadSupport; void castRays(); void initRays(); public: BenchmarkDemo(struct GUIHelperInterface* helper, int benchmark) : CommonRigidBodyMTBase(helper), m_benchmark(benchmark) { } virtual ~BenchmarkDemo() { exitPhysics(); } void initPhysics(); void exitPhysics(); void stepSimulation(float deltaTime); void resetCamera() { float dist = 120; float pitch = -35; float yaw = 52; float targetPos[3] = {0, 10.46, 0}; m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]); } }; class btRaycastBar2 { public: btVector3 source[NUMRAYS]; btVector3 dest[NUMRAYS]; btVector3 direction[NUMRAYS]; btVector3 hit[NUMRAYS]; btVector3 normal[NUMRAYS]; struct GUIHelperInterface* m_guiHelper; int frame_counter; int ms; int sum_ms; int sum_ms_samples; int min_ms; int max_ms; #ifdef USE_BT_CLOCK btClock frame_timer; #endif //USE_BT_CLOCK btScalar dx; btScalar min_x; btScalar max_x; btScalar max_y; btScalar sign; btRaycastBar2() { m_guiHelper = 0; ms = 0; max_ms = 0; min_ms = 9999; sum_ms_samples = 0; sum_ms = 0; } btRaycastBar2(btScalar ray_length, btScalar z, btScalar max_y, struct GUIHelperInterface* guiHelper) { m_guiHelper = guiHelper; frame_counter = 0; ms = 0; max_ms = 0; min_ms = 9999; sum_ms_samples = 0; sum_ms = 0; dx = 10.0; min_x = 0; max_x = 0; this->max_y = max_y; sign = 1.0; btScalar dalpha = 2 * SIMD_2_PI / NUMRAYS; for (int i = 0; i < NUMRAYS; i++) { btScalar alpha = dalpha * i; // rotate around by alpha degrees y btQuaternion q(btVector3(0.0, 1.0, 0.0), alpha); direction[i] = btVector3(1.0, 0.0, 0.0); direction[i] = quatRotate(q, direction[i]); direction[i] = direction[i] * ray_length; source[i] = btVector3(min_x, max_y, z); dest[i] = source[i] + direction[i]; dest[i][1] = -1000; normal[i] = btVector3(1.0, 0.0, 0.0); } } void move(btScalar dt) { if (dt > btScalar(1.0 / 60.0)) dt = btScalar(1.0 / 60.0); for (int i = 0; i < NUMRAYS; i++) { source[i][0] += dx * dt * sign; dest[i][0] += dx * dt * sign; } if (source[0][0] < min_x) sign = 1.0; else if (source[0][0] > max_x) sign = -1.0; } void castRays(btCollisionWorld* cw, int iBegin, int iEnd) { for (int i = iBegin; i < iEnd; ++i) { btCollisionWorld::ClosestRayResultCallback cb(source[i], dest[i]); { BT_PROFILE("cw->rayTest"); cw->rayTest(source[i], dest[i], cb); } if (cb.hasHit()) { hit[i] = cb.m_hitPointWorld; normal[i] = cb.m_hitNormalWorld; normal[i].normalize(); } else { hit[i] = dest[i]; normal[i] = btVector3(1.0, 0.0, 0.0); } } } struct CastRaysLoopBody : public btIParallelForBody { btCollisionWorld* mWorld; btRaycastBar2* mRaycasts; CastRaysLoopBody(btCollisionWorld* cw, btRaycastBar2* rb) : mWorld(cw), mRaycasts(rb) {} void forLoop(int iBegin, int iEnd) const { mRaycasts->castRays(mWorld, iBegin, iEnd); } }; void cast(btCollisionWorld* cw, bool multiThreading = false) { BT_PROFILE("cast"); #ifdef USE_BT_CLOCK frame_timer.reset(); #endif //USE_BT_CLOCK #ifdef BATCH_RAYCASTER if (!gBatchRaycaster) return; gBatchRaycaster->clearRays(); for (int i = 0; i < NUMRAYS; i++) { gBatchRaycaster->addRay(source[i], dest[i]); } gBatchRaycaster->performBatchRaycast(); for (int i = 0; i < gBatchRaycaster->getNumRays(); i++) { const SpuRaycastTaskWorkUnitOut& out = (*gBatchRaycaster)[i]; hit[i].setInterpolate3(source[i], dest[i], out.hitFraction); normal[i] = out.hitNormal; normal[i].normalize(); } #else #if USE_PARALLEL_RAYCASTS if (multiThreading) { CastRaysLoopBody rayLooper(cw, this); int grainSize = 20; // number of raycasts per task btParallelFor(0, NUMRAYS, grainSize, rayLooper); } else #endif // USE_PARALLEL_RAYCASTS { // single threaded castRays(cw, 0, NUMRAYS); } #ifdef USE_BT_CLOCK ms += frame_timer.getTimeMilliseconds(); #endif //USE_BT_CLOCK frame_counter++; if (frame_counter > 50) { min_ms = ms < min_ms ? ms : min_ms; max_ms = ms > max_ms ? ms : max_ms; sum_ms += ms; sum_ms_samples++; btScalar mean_ms = (btScalar)sum_ms / (btScalar)sum_ms_samples; printf("%d rays in %d ms %d %d %f\n", NUMRAYS * frame_counter, ms, min_ms, max_ms, mean_ms); ms = 0; frame_counter = 0; } #endif } void draw() { if (m_guiHelper) { btAlignedObjectArray indices; btAlignedObjectArray points; float lineColor[4] = {1, 0.4, .4, 1}; for (int i = 0; i < NUMRAYS; i++) { btVector3FloatData s, h; for (int w = 0; w < 4; w++) { s.m_floats[w] = source[i][w]; h.m_floats[w] = hit[i][w]; } points.push_back(s); points.push_back(h); indices.push_back(indices.size()); indices.push_back(indices.size()); } m_guiHelper->getRenderInterface()->drawLines(&points[0].m_floats[0], lineColor, points.size(), sizeof(btVector3FloatData), &indices[0], indices.size(), 1); } } }; static btRaycastBar2 raycastBar; void BenchmarkDemo::stepSimulation(float deltaTime) { if (m_dynamicsWorld) { m_dynamicsWorld->stepSimulation(deltaTime); } if (m_benchmark == 7) { castRays(); raycastBar.draw(); } } void BenchmarkDemo::initPhysics() { m_guiHelper->setUpAxis(1); setCameraDistance(btScalar(100.)); createEmptyDynamicsWorld(); /////collision configuration contains default setup for memory, collision setup //btDefaultCollisionConstructionInfo cci; //cci.m_defaultMaxPersistentManifoldPoolSize = 32768; //m_collisionConfiguration = new btDefaultCollisionConfiguration(cci); /////use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded) //m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration); // //m_dispatcher->setDispatcherFlags(btCollisionDispatcher::CD_DISABLE_CONTACTPOOL_DYNAMIC_ALLOCATION); /////the maximum size of the collision world. Make sure objects stay within these boundaries /////Don't make the world AABB size too large, it will harm simulation quality and performance //btVector3 worldAabbMin(-1000,-1000,-1000); //btVector3 worldAabbMax(1000,1000,1000); // //btHashedOverlappingPairCache* pairCache = new btHashedOverlappingPairCache(); //m_broadphase = new btAxisSweep3(worldAabbMin,worldAabbMax,3500,pairCache); // m_broadphase = new btSimpleBroadphase(); // m_broadphase = new btDbvtBroadphase(); ///the default constraint solver. For parallel processing you can use a different solver (see Extras/BulletMultiThreaded) //btSequentialImpulseConstraintSolver* sol = new btSequentialImpulseConstraintSolver; //m_solver = sol; //btDiscreteDynamicsWorld* dynamicsWorld; //m_dynamicsWorld = dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration); ///the following 3 lines increase the performance dramatically, with a little bit of loss of quality m_dynamicsWorld->getSolverInfo().m_solverMode |= SOLVER_ENABLE_FRICTION_DIRECTION_CACHING; //don't recalculate friction values each frame m_dynamicsWorld->getSolverInfo().m_numIterations = 5; //few solver iterations //m_defaultContactProcessingThreshold = 0.f;//used when creating bodies: body->setContactProcessingThreshold(...); m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld); m_dynamicsWorld->setGravity(btVector3(0, -10, 0)); if (m_benchmark < 5) { ///create a few basic rigid bodies btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(250.), btScalar(50.), btScalar(250.))); // btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),0); m_collisionShapes.push_back(groundShape); btTransform groundTransform; groundTransform.setIdentity(); groundTransform.setOrigin(btVector3(0, -50, 0)); //We can also use DemoApplication::createRigidBody, but for clarity it is provided here: { btScalar mass(0.); //rigidbody is dynamic if and only if mass is non zero, otherwise static bool isDynamic = (mass != 0.f); btVector3 localInertia(0, 0, 0); if (isDynamic) groundShape->calculateLocalInertia(mass, localInertia); //using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform); btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, groundShape, localInertia); btRigidBody* body = new btRigidBody(rbInfo); //add the body to the dynamics world m_dynamicsWorld->addRigidBody(body); } } switch (m_benchmark) { case 1: { createTest1(); break; } case 2: { createTest2(); break; } case 3: { createTest3(); break; } case 4: { createTest4(); break; } case 5: { createTest5(); break; } case 6: { createTest6(); break; } case 7: { createTest7(); break; } case 8: { createTest8(); break; } default: { } } m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld); } void BenchmarkDemo::createTest1() { // 3000 int size = 8; const float cubeSize = 1.0f; float spacing = cubeSize; btVector3 pos(0.0f, cubeSize * 2, 0.f); float offset = -size * (cubeSize * 2.0f + spacing) * 0.5f; btBoxShape* blockShape = new btBoxShape(btVector3(cubeSize - COLLISION_RADIUS, cubeSize - COLLISION_RADIUS, cubeSize - COLLISION_RADIUS)); btVector3 localInertia(0, 0, 0); float mass = 2.f; blockShape->calculateLocalInertia(mass, localInertia); btTransform trans; trans.setIdentity(); for (int k = 0; k < 47; k++) { for (int j = 0; j < size; j++) { pos[2] = offset + (float)j * (cubeSize * 2.0f + spacing); for (int i = 0; i < size; i++) { pos[0] = offset + (float)i * (cubeSize * 2.0f + spacing); trans.setOrigin(pos); btRigidBody* cmbody; cmbody = createRigidBody(mass, trans, blockShape); } } offset -= 0.05f * spacing * (size - 1); // spacing *= 1.01f; pos[1] += (cubeSize * 2.0f + spacing); } } /////////////////////////////////////////////////////////////////////////////// // Pyramid 3 void BenchmarkDemo::createWall(const btVector3& offsetPosition, int stackSize, const btVector3& boxSize) { btBoxShape* blockShape = new btBoxShape(btVector3(boxSize[0] - COLLISION_RADIUS, boxSize[1] - COLLISION_RADIUS, boxSize[2] - COLLISION_RADIUS)); float mass = 1.f; btVector3 localInertia(0, 0, 0); blockShape->calculateLocalInertia(mass, localInertia); // btScalar diffX = boxSize[0] * 1.0f; btScalar diffY = boxSize[1] * 1.0f; btScalar diffZ = boxSize[2] * 1.0f; btScalar offset = -stackSize * (diffZ * 2.0f) * 0.5f; btVector3 pos(0.0f, diffY, 0.0f); btTransform trans; trans.setIdentity(); while (stackSize) { for (int i = 0; i < stackSize; i++) { pos[2] = offset + (float)i * (diffZ * 2.0f); trans.setOrigin(offsetPosition + pos); createRigidBody(mass, trans, blockShape); } offset += diffZ; pos[1] += (diffY * 2.0f); stackSize--; } } void BenchmarkDemo::createPyramid(const btVector3& offsetPosition, int stackSize, const btVector3& boxSize) { btScalar space = 0.0001f; btVector3 pos(0.0f, boxSize[1], 0.0f); btBoxShape* blockShape = new btBoxShape(btVector3(boxSize[0] - COLLISION_RADIUS, boxSize[1] - COLLISION_RADIUS, boxSize[2] - COLLISION_RADIUS)); btTransform trans; trans.setIdentity(); btScalar mass = 1.f; btVector3 localInertia(0, 0, 0); blockShape->calculateLocalInertia(mass, localInertia); btScalar diffX = boxSize[0] * 1.02f; btScalar diffY = boxSize[1] * 1.02f; btScalar diffZ = boxSize[2] * 1.02f; btScalar offsetX = -stackSize * (diffX * 2.0f + space) * 0.5f; btScalar offsetZ = -stackSize * (diffZ * 2.0f + space) * 0.5f; while (stackSize) { for (int j = 0; j < stackSize; j++) { pos[2] = offsetZ + (float)j * (diffZ * 2.0f + space); for (int i = 0; i < stackSize; i++) { pos[0] = offsetX + (float)i * (diffX * 2.0f + space); trans.setOrigin(offsetPosition + pos); this->createRigidBody(mass, trans, blockShape); } } offsetX += diffX; offsetZ += diffZ; pos[1] += (diffY * 2.0f + space); stackSize--; } } const btVector3 rotate(const btQuaternion& quat, const btVector3& vec) { float tmpX, tmpY, tmpZ, tmpW; tmpX = (((quat.getW() * vec.getX()) + (quat.getY() * vec.getZ())) - (quat.getZ() * vec.getY())); tmpY = (((quat.getW() * vec.getY()) + (quat.getZ() * vec.getX())) - (quat.getX() * vec.getZ())); tmpZ = (((quat.getW() * vec.getZ()) + (quat.getX() * vec.getY())) - (quat.getY() * vec.getX())); tmpW = (((quat.getX() * vec.getX()) + (quat.getY() * vec.getY())) + (quat.getZ() * vec.getZ())); return btVector3( ((((tmpW * quat.getX()) + (tmpX * quat.getW())) - (tmpY * quat.getZ())) + (tmpZ * quat.getY())), ((((tmpW * quat.getY()) + (tmpY * quat.getW())) - (tmpZ * quat.getX())) + (tmpX * quat.getZ())), ((((tmpW * quat.getZ()) + (tmpZ * quat.getW())) - (tmpX * quat.getY())) + (tmpY * quat.getX()))); } void BenchmarkDemo::createTowerCircle(const btVector3& offsetPosition, int stackSize, int rotSize, const btVector3& boxSize) { btBoxShape* blockShape = new btBoxShape(btVector3(boxSize[0] - COLLISION_RADIUS, boxSize[1] - COLLISION_RADIUS, boxSize[2] - COLLISION_RADIUS)); btTransform trans; trans.setIdentity(); float mass = 1.f; btVector3 localInertia(0, 0, 0); blockShape->calculateLocalInertia(mass, localInertia); float radius = 1.3f * rotSize * boxSize[0] / SIMD_PI; // create active boxes btQuaternion rotY(0, 1, 0, 0); float posY = boxSize[1]; for (int i = 0; i < stackSize; i++) { for (int j = 0; j < rotSize; j++) { trans.setOrigin(offsetPosition + rotate(rotY, btVector3(0.0f, posY, radius))); trans.setRotation(rotY); createRigidBody(mass, trans, blockShape); rotY *= btQuaternion(btVector3(0, 1, 0), SIMD_PI / (rotSize * btScalar(0.5))); } posY += boxSize[1] * 2.0f; rotY *= btQuaternion(btVector3(0, 1, 0), SIMD_PI / (float)rotSize); } } void BenchmarkDemo::createTest2() { setCameraDistance(btScalar(50.)); const float cubeSize = 1.0f; createPyramid(btVector3(-20.0f, 0.0f, 0.0f), 12, btVector3(cubeSize, cubeSize, cubeSize)); createWall(btVector3(-2.0f, 0.0f, 0.0f), 12, btVector3(cubeSize, cubeSize, cubeSize)); createWall(btVector3(4.0f, 0.0f, 0.0f), 12, btVector3(cubeSize, cubeSize, cubeSize)); createWall(btVector3(10.0f, 0.0f, 0.0f), 12, btVector3(cubeSize, cubeSize, cubeSize)); createTowerCircle(btVector3(25.0f, 0.0f, 0.0f), 8, 24, btVector3(cubeSize, cubeSize, cubeSize)); } // Enrico: Shouldn't these three variables be real constants and not defines? #ifndef M_PI #define M_PI btScalar(3.14159265358979323846) #endif #ifndef M_PI_2 #define M_PI_2 btScalar(1.57079632679489661923) #endif #ifndef M_PI_4 #define M_PI_4 btScalar(0.785398163397448309616) #endif class RagDoll { enum { BODYPART_PELVIS = 0, BODYPART_SPINE, BODYPART_HEAD, BODYPART_LEFT_UPPER_LEG, BODYPART_LEFT_LOWER_LEG, BODYPART_RIGHT_UPPER_LEG, BODYPART_RIGHT_LOWER_LEG, BODYPART_LEFT_UPPER_ARM, BODYPART_LEFT_LOWER_ARM, BODYPART_RIGHT_UPPER_ARM, BODYPART_RIGHT_LOWER_ARM, BODYPART_COUNT }; enum { JOINT_PELVIS_SPINE = 0, JOINT_SPINE_HEAD, JOINT_LEFT_HIP, JOINT_LEFT_KNEE, JOINT_RIGHT_HIP, JOINT_RIGHT_KNEE, JOINT_LEFT_SHOULDER, JOINT_LEFT_ELBOW, JOINT_RIGHT_SHOULDER, JOINT_RIGHT_ELBOW, JOINT_COUNT }; btDynamicsWorld* m_ownerWorld; btCollisionShape* m_shapes[BODYPART_COUNT]; btRigidBody* m_bodies[BODYPART_COUNT]; btTypedConstraint* m_joints[JOINT_COUNT]; btRigidBody* createRigidBody(btScalar mass, const btTransform& startTransform, btCollisionShape* shape) { bool isDynamic = (mass != 0.f); btVector3 localInertia(0, 0, 0); if (isDynamic) shape->calculateLocalInertia(mass, localInertia); btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform); btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, shape, localInertia); btRigidBody* body = new btRigidBody(rbInfo); m_ownerWorld->addRigidBody(body); return body; } public: RagDoll(btDynamicsWorld* ownerWorld, const btVector3& positionOffset, btScalar scale) : m_ownerWorld(ownerWorld) { // Setup the geometry m_shapes[BODYPART_PELVIS] = new btCapsuleShape(btScalar(0.15) * scale, btScalar(0.20) * scale); m_shapes[BODYPART_SPINE] = new btCapsuleShape(btScalar(0.15) * scale, btScalar(0.28) * scale); m_shapes[BODYPART_HEAD] = new btCapsuleShape(btScalar(0.10) * scale, btScalar(0.05) * scale); m_shapes[BODYPART_LEFT_UPPER_LEG] = new btCapsuleShape(btScalar(0.07) * scale, btScalar(0.45) * scale); m_shapes[BODYPART_LEFT_LOWER_LEG] = new btCapsuleShape(btScalar(0.05) * scale, btScalar(0.37) * scale); m_shapes[BODYPART_RIGHT_UPPER_LEG] = new btCapsuleShape(btScalar(0.07) * scale, btScalar(0.45) * scale); m_shapes[BODYPART_RIGHT_LOWER_LEG] = new btCapsuleShape(btScalar(0.05) * scale, btScalar(0.37) * scale); m_shapes[BODYPART_LEFT_UPPER_ARM] = new btCapsuleShape(btScalar(0.05) * scale, btScalar(0.33) * scale); m_shapes[BODYPART_LEFT_LOWER_ARM] = new btCapsuleShape(btScalar(0.04) * scale, btScalar(0.25) * scale); m_shapes[BODYPART_RIGHT_UPPER_ARM] = new btCapsuleShape(btScalar(0.05) * scale, btScalar(0.33) * scale); m_shapes[BODYPART_RIGHT_LOWER_ARM] = new btCapsuleShape(btScalar(0.04) * scale, btScalar(0.25) * scale); // Setup all the rigid bodies btTransform offset; offset.setIdentity(); offset.setOrigin(positionOffset); btTransform transform; transform.setIdentity(); transform.setOrigin(scale * btVector3(btScalar(0.), btScalar(1.), btScalar(0.))); m_bodies[BODYPART_PELVIS] = createRigidBody(btScalar(1.), offset * transform, m_shapes[BODYPART_PELVIS]); transform.setIdentity(); transform.setOrigin(scale * btVector3(btScalar(0.), btScalar(1.2), btScalar(0.))); m_bodies[BODYPART_SPINE] = createRigidBody(btScalar(1.), offset * transform, m_shapes[BODYPART_SPINE]); transform.setIdentity(); transform.setOrigin(scale * btVector3(btScalar(0.), btScalar(1.6), btScalar(0.))); m_bodies[BODYPART_HEAD] = createRigidBody(btScalar(1.), offset * transform, m_shapes[BODYPART_HEAD]); transform.setIdentity(); transform.setOrigin(scale * btVector3(btScalar(-0.18), btScalar(0.65), btScalar(0.))); m_bodies[BODYPART_LEFT_UPPER_LEG] = createRigidBody(btScalar(1.), offset * transform, m_shapes[BODYPART_LEFT_UPPER_LEG]); transform.setIdentity(); transform.setOrigin(scale * btVector3(btScalar(-0.18), btScalar(0.2), btScalar(0.))); m_bodies[BODYPART_LEFT_LOWER_LEG] = createRigidBody(btScalar(1.), offset * transform, m_shapes[BODYPART_LEFT_LOWER_LEG]); transform.setIdentity(); transform.setOrigin(scale * btVector3(btScalar(0.18), btScalar(0.65), btScalar(0.))); m_bodies[BODYPART_RIGHT_UPPER_LEG] = createRigidBody(btScalar(1.), offset * transform, m_shapes[BODYPART_RIGHT_UPPER_LEG]); transform.setIdentity(); transform.setOrigin(scale * btVector3(btScalar(0.18), btScalar(0.2), btScalar(0.))); m_bodies[BODYPART_RIGHT_LOWER_LEG] = createRigidBody(btScalar(1.), offset * transform, m_shapes[BODYPART_RIGHT_LOWER_LEG]); transform.setIdentity(); transform.setOrigin(scale * btVector3(btScalar(-0.35), btScalar(1.45), btScalar(0.))); transform.getBasis().setEulerZYX(0, 0, M_PI_2); m_bodies[BODYPART_LEFT_UPPER_ARM] = createRigidBody(btScalar(1.), offset * transform, m_shapes[BODYPART_LEFT_UPPER_ARM]); transform.setIdentity(); transform.setOrigin(scale * btVector3(btScalar(-0.7), btScalar(1.45), btScalar(0.))); transform.getBasis().setEulerZYX(0, 0, M_PI_2); m_bodies[BODYPART_LEFT_LOWER_ARM] = createRigidBody(btScalar(1.), offset * transform, m_shapes[BODYPART_LEFT_LOWER_ARM]); transform.setIdentity(); transform.setOrigin(scale * btVector3(btScalar(0.35), btScalar(1.45), btScalar(0.))); transform.getBasis().setEulerZYX(0, 0, -M_PI_2); m_bodies[BODYPART_RIGHT_UPPER_ARM] = createRigidBody(btScalar(1.), offset * transform, m_shapes[BODYPART_RIGHT_UPPER_ARM]); transform.setIdentity(); transform.setOrigin(scale * btVector3(btScalar(0.7), btScalar(1.45), btScalar(0.))); transform.getBasis().setEulerZYX(0, 0, -M_PI_2); m_bodies[BODYPART_RIGHT_LOWER_ARM] = createRigidBody(btScalar(1.), offset * transform, m_shapes[BODYPART_RIGHT_LOWER_ARM]); // Setup some damping on the m_bodies for (int i = 0; i < BODYPART_COUNT; ++i) { m_bodies[i]->setDamping(btScalar(0.05), btScalar(0.85)); m_bodies[i]->setDeactivationTime(btScalar(0.8)); m_bodies[i]->setSleepingThresholds(btScalar(1.6), btScalar(2.5)); } // Now setup the constraints btHingeConstraint* hingeC; btConeTwistConstraint* coneC; btTransform localA, localB; localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0, M_PI_2, 0); localA.setOrigin(scale * btVector3(btScalar(0.), btScalar(0.15), btScalar(0.))); localB.getBasis().setEulerZYX(0, M_PI_2, 0); localB.setOrigin(scale * btVector3(btScalar(0.), btScalar(-0.15), btScalar(0.))); hingeC = new btHingeConstraint(*m_bodies[BODYPART_PELVIS], *m_bodies[BODYPART_SPINE], localA, localB); hingeC->setLimit(btScalar(-M_PI_4), btScalar(M_PI_2)); m_joints[JOINT_PELVIS_SPINE] = hingeC; m_ownerWorld->addConstraint(m_joints[JOINT_PELVIS_SPINE], true); localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0, 0, M_PI_2); localA.setOrigin(scale * btVector3(btScalar(0.), btScalar(0.30), btScalar(0.))); localB.getBasis().setEulerZYX(0, 0, M_PI_2); localB.setOrigin(scale * btVector3(btScalar(0.), btScalar(-0.14), btScalar(0.))); coneC = new btConeTwistConstraint(*m_bodies[BODYPART_SPINE], *m_bodies[BODYPART_HEAD], localA, localB); coneC->setLimit(M_PI_4, M_PI_4, M_PI_2); m_joints[JOINT_SPINE_HEAD] = coneC; m_ownerWorld->addConstraint(m_joints[JOINT_SPINE_HEAD], true); localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0, 0, -M_PI_4 * 5); localA.setOrigin(scale * btVector3(btScalar(-0.18), btScalar(-0.10), btScalar(0.))); localB.getBasis().setEulerZYX(0, 0, -M_PI_4 * 5); localB.setOrigin(scale * btVector3(btScalar(0.), btScalar(0.225), btScalar(0.))); coneC = new btConeTwistConstraint(*m_bodies[BODYPART_PELVIS], *m_bodies[BODYPART_LEFT_UPPER_LEG], localA, localB); coneC->setLimit(M_PI_4, M_PI_4, 0); m_joints[JOINT_LEFT_HIP] = coneC; m_ownerWorld->addConstraint(m_joints[JOINT_LEFT_HIP], true); localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0, M_PI_2, 0); localA.setOrigin(scale * btVector3(btScalar(0.), btScalar(-0.225), btScalar(0.))); localB.getBasis().setEulerZYX(0, M_PI_2, 0); localB.setOrigin(scale * btVector3(btScalar(0.), btScalar(0.185), btScalar(0.))); hingeC = new btHingeConstraint(*m_bodies[BODYPART_LEFT_UPPER_LEG], *m_bodies[BODYPART_LEFT_LOWER_LEG], localA, localB); hingeC->setLimit(btScalar(0), btScalar(M_PI_2)); m_joints[JOINT_LEFT_KNEE] = hingeC; m_ownerWorld->addConstraint(m_joints[JOINT_LEFT_KNEE], true); localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0, 0, M_PI_4); localA.setOrigin(scale * btVector3(btScalar(0.18), btScalar(-0.10), btScalar(0.))); localB.getBasis().setEulerZYX(0, 0, M_PI_4); localB.setOrigin(scale * btVector3(btScalar(0.), btScalar(0.225), btScalar(0.))); coneC = new btConeTwistConstraint(*m_bodies[BODYPART_PELVIS], *m_bodies[BODYPART_RIGHT_UPPER_LEG], localA, localB); coneC->setLimit(M_PI_4, M_PI_4, 0); m_joints[JOINT_RIGHT_HIP] = coneC; m_ownerWorld->addConstraint(m_joints[JOINT_RIGHT_HIP], true); localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0, M_PI_2, 0); localA.setOrigin(scale * btVector3(btScalar(0.), btScalar(-0.225), btScalar(0.))); localB.getBasis().setEulerZYX(0, M_PI_2, 0); localB.setOrigin(scale * btVector3(btScalar(0.), btScalar(0.185), btScalar(0.))); hingeC = new btHingeConstraint(*m_bodies[BODYPART_RIGHT_UPPER_LEG], *m_bodies[BODYPART_RIGHT_LOWER_LEG], localA, localB); hingeC->setLimit(btScalar(0), btScalar(M_PI_2)); m_joints[JOINT_RIGHT_KNEE] = hingeC; m_ownerWorld->addConstraint(m_joints[JOINT_RIGHT_KNEE], true); localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0, 0, M_PI); localA.setOrigin(scale * btVector3(btScalar(-0.2), btScalar(0.15), btScalar(0.))); localB.getBasis().setEulerZYX(0, 0, M_PI_2); localB.setOrigin(scale * btVector3(btScalar(0.), btScalar(-0.18), btScalar(0.))); coneC = new btConeTwistConstraint(*m_bodies[BODYPART_SPINE], *m_bodies[BODYPART_LEFT_UPPER_ARM], localA, localB); coneC->setLimit(M_PI_2, M_PI_2, 0); m_joints[JOINT_LEFT_SHOULDER] = coneC; m_ownerWorld->addConstraint(m_joints[JOINT_LEFT_SHOULDER], true); localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0, M_PI_2, 0); localA.setOrigin(scale * btVector3(btScalar(0.), btScalar(0.18), btScalar(0.))); localB.getBasis().setEulerZYX(0, M_PI_2, 0); localB.setOrigin(scale * btVector3(btScalar(0.), btScalar(-0.14), btScalar(0.))); hingeC = new btHingeConstraint(*m_bodies[BODYPART_LEFT_UPPER_ARM], *m_bodies[BODYPART_LEFT_LOWER_ARM], localA, localB); hingeC->setLimit(btScalar(-M_PI_2), btScalar(0)); m_joints[JOINT_LEFT_ELBOW] = hingeC; m_ownerWorld->addConstraint(m_joints[JOINT_LEFT_ELBOW], true); localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0, 0, 0); localA.setOrigin(scale * btVector3(btScalar(0.2), btScalar(0.15), btScalar(0.))); localB.getBasis().setEulerZYX(0, 0, M_PI_2); localB.setOrigin(scale * btVector3(btScalar(0.), btScalar(-0.18), btScalar(0.))); coneC = new btConeTwistConstraint(*m_bodies[BODYPART_SPINE], *m_bodies[BODYPART_RIGHT_UPPER_ARM], localA, localB); coneC->setLimit(M_PI_2, M_PI_2, 0); m_joints[JOINT_RIGHT_SHOULDER] = coneC; m_ownerWorld->addConstraint(m_joints[JOINT_RIGHT_SHOULDER], true); localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0, M_PI_2, 0); localA.setOrigin(scale * btVector3(btScalar(0.), btScalar(0.18), btScalar(0.))); localB.getBasis().setEulerZYX(0, M_PI_2, 0); localB.setOrigin(scale * btVector3(btScalar(0.), btScalar(-0.14), btScalar(0.))); hingeC = new btHingeConstraint(*m_bodies[BODYPART_RIGHT_UPPER_ARM], *m_bodies[BODYPART_RIGHT_LOWER_ARM], localA, localB); hingeC->setLimit(btScalar(-M_PI_2), btScalar(0)); m_joints[JOINT_RIGHT_ELBOW] = hingeC; m_ownerWorld->addConstraint(m_joints[JOINT_RIGHT_ELBOW], true); } virtual ~RagDoll() { int i; // Remove all constraints for (i = 0; i < JOINT_COUNT; ++i) { m_ownerWorld->removeConstraint(m_joints[i]); delete m_joints[i]; m_joints[i] = 0; } // Remove all bodies and shapes for (i = 0; i < BODYPART_COUNT; ++i) { m_ownerWorld->removeRigidBody(m_bodies[i]); delete m_bodies[i]->getMotionState(); delete m_bodies[i]; m_bodies[i] = 0; delete m_shapes[i]; m_shapes[i] = 0; } } }; void BenchmarkDemo::createTest3() { setCameraDistance(btScalar(50.)); int size = 16; float sizeX = 1.f; float sizeY = 1.f; //int rc=0; btScalar scale(3.5); btVector3 pos(0.0f, sizeY, 0.0f); while (size) { float offset = -size * (sizeX * 6.0f) * 0.5f; for (int i = 0; i < size; i++) { pos[0] = offset + (float)i * (sizeX * 6.0f); RagDoll* ragDoll = new RagDoll(m_dynamicsWorld, pos, scale); m_ragdolls.push_back(ragDoll); } offset += sizeX; pos[1] += (sizeY * 7.0f); pos[2] -= sizeX * 2.0f; size--; } } void BenchmarkDemo::createTest4() { setCameraDistance(btScalar(50.)); int size = 8; const float cubeSize = 1.5f; float spacing = cubeSize; btVector3 pos(0.0f, cubeSize * 2, 0.0f); float offset = -size * (cubeSize * 2.0f + spacing) * 0.5f; btConvexHullShape* convexHullShape = new btConvexHullShape(); btScalar scaling(1); convexHullShape->setLocalScaling(btVector3(scaling, scaling, scaling)); for (int i = 0; i < TaruVtxCount; i++) { btVector3 vtx(TaruVtx[i * 3], TaruVtx[i * 3 + 1], TaruVtx[i * 3 + 2]); convexHullShape->addPoint(vtx * btScalar(1. / scaling)); } //this will enable polyhedral contact clipping, better quality, slightly slower convexHullShape->initializePolyhedralFeatures(); btTransform trans; trans.setIdentity(); float mass = 1.f; btVector3 localInertia(0, 0, 0); convexHullShape->calculateLocalInertia(mass, localInertia); for (int k = 0; k < 15; k++) { for (int j = 0; j < size; j++) { pos[2] = offset + (float)j * (cubeSize * 2.0f + spacing); for (int i = 0; i < size; i++) { pos[0] = offset + (float)i * (cubeSize * 2.0f + spacing); trans.setOrigin(pos); createRigidBody(mass, trans, convexHullShape); } } offset -= 0.05f * spacing * (size - 1); spacing *= 1.01f; pos[1] += (cubeSize * 2.0f + spacing); } } /////////////////////////////////////////////////////////////////////////////// // LargeMesh int LandscapeVtxCount[] = { Landscape01VtxCount, Landscape02VtxCount, Landscape03VtxCount, Landscape04VtxCount, Landscape05VtxCount, Landscape06VtxCount, Landscape07VtxCount, Landscape08VtxCount, }; int LandscapeIdxCount[] = { Landscape01IdxCount, Landscape02IdxCount, Landscape03IdxCount, Landscape04IdxCount, Landscape05IdxCount, Landscape06IdxCount, Landscape07IdxCount, Landscape08IdxCount, }; btScalar* LandscapeVtx[] = { Landscape01Vtx, Landscape02Vtx, Landscape03Vtx, Landscape04Vtx, Landscape05Vtx, Landscape06Vtx, Landscape07Vtx, Landscape08Vtx, }; btScalar* LandscapeNml[] = { Landscape01Nml, Landscape02Nml, Landscape03Nml, Landscape04Nml, Landscape05Nml, Landscape06Nml, Landscape07Nml, Landscape08Nml, }; btScalar* LandscapeTex[] = { Landscape01Tex, Landscape02Tex, Landscape03Tex, Landscape04Tex, Landscape05Tex, Landscape06Tex, Landscape07Tex, Landscape08Tex, }; unsigned short* LandscapeIdx[] = { Landscape01Idx, Landscape02Idx, Landscape03Idx, Landscape04Idx, Landscape05Idx, Landscape06Idx, Landscape07Idx, Landscape08Idx, }; void BenchmarkDemo::createLargeMeshBody() { btTransform trans; trans.setIdentity(); for (int i = 0; i < 8; i++) { btTriangleIndexVertexArray* meshInterface = new btTriangleIndexVertexArray(); btIndexedMesh part; part.m_vertexBase = (const unsigned char*)LandscapeVtx[i]; part.m_vertexStride = sizeof(btScalar) * 3; part.m_numVertices = LandscapeVtxCount[i]; part.m_triangleIndexBase = (const unsigned char*)LandscapeIdx[i]; part.m_triangleIndexStride = sizeof(short) * 3; part.m_numTriangles = LandscapeIdxCount[i] / 3; part.m_indexType = PHY_SHORT; meshInterface->addIndexedMesh(part, PHY_SHORT); bool useQuantizedAabbCompression = true; btBvhTriangleMeshShape* trimeshShape = new btBvhTriangleMeshShape(meshInterface, useQuantizedAabbCompression); btVector3 localInertia(0, 0, 0); trans.setOrigin(btVector3(0, -25, 0)); btRigidBody* body = createRigidBody(0, trans, trimeshShape); body->setFriction(btScalar(0.9)); } } void BenchmarkDemo::createTest5() { setCameraDistance(btScalar(250.)); btVector3 boxSize(1.5f, 1.5f, 1.5f); float boxMass = 1.0f; float sphereRadius = 1.5f; float sphereMass = 1.0f; float capsuleHalf = 2.0f; float capsuleRadius = 1.0f; float capsuleMass = 1.0f; { int size = 10; int height = 10; const float cubeSize = boxSize[0]; float spacing = 2.0f; btVector3 pos(0.0f, 20.0f, 0.0f); float offset = -size * (cubeSize * 2.0f + spacing) * 0.5f; int numBodies = 0; for (int k = 0; k < height; k++) { for (int j = 0; j < size; j++) { pos[2] = offset + (float)j * (cubeSize * 2.0f + spacing); for (int i = 0; i < size; i++) { pos[0] = offset + (float)i * (cubeSize * 2.0f + spacing); btVector3 bpos = btVector3(0, 25, 0) + btVector3(5.0f, 1.0f, 5.0f) * pos; int idx = rand() % 9; btTransform trans; trans.setIdentity(); trans.setOrigin(bpos); switch (idx) { case 0: case 1: case 2: { float r = 0.5f * (idx + 1); btBoxShape* boxShape = new btBoxShape(boxSize * r); createRigidBody(boxMass * r, trans, boxShape); } break; case 3: case 4: case 5: { float r = 0.5f * (idx - 3 + 1); btSphereShape* sphereShape = new btSphereShape(sphereRadius * r); createRigidBody(sphereMass * r, trans, sphereShape); } break; case 6: case 7: case 8: { float r = 0.5f * (idx - 6 + 1); btCapsuleShape* capsuleShape = new btCapsuleShape(capsuleRadius * r, capsuleHalf * r); createRigidBody(capsuleMass * r, trans, capsuleShape); } break; } numBodies++; } } offset -= 0.05f * spacing * (size - 1); spacing *= 1.1f; pos[1] += (cubeSize * 2.0f + spacing); } } createLargeMeshBody(); } void BenchmarkDemo::createTest6() { setCameraDistance(btScalar(250.)); btVector3 boxSize(1.5f, 1.5f, 1.5f); btConvexHullShape* convexHullShape = new btConvexHullShape(); for (int i = 0; i < TaruVtxCount; i++) { btVector3 vtx(TaruVtx[i * 3], TaruVtx[i * 3 + 1], TaruVtx[i * 3 + 2]); convexHullShape->addPoint(vtx); } btTransform trans; trans.setIdentity(); float mass = 1.f; btVector3 localInertia(0, 0, 0); convexHullShape->calculateLocalInertia(mass, localInertia); { int size = 10; int height = 10; const float cubeSize = boxSize[0]; float spacing = 2.0f; btVector3 pos(0.0f, 20.0f, 0.0f); float offset = -size * (cubeSize * 2.0f + spacing) * 0.5f; for (int k = 0; k < height; k++) { for (int j = 0; j < size; j++) { pos[2] = offset + (float)j * (cubeSize * 2.0f + spacing); for (int i = 0; i < size; i++) { pos[0] = offset + (float)i * (cubeSize * 2.0f + spacing); btVector3 bpos = btVector3(0, 25, 0) + btVector3(5.0f, 1.0f, 5.0f) * pos; trans.setOrigin(bpos); createRigidBody(mass, trans, convexHullShape); } } offset -= 0.05f * spacing * (size - 1); spacing *= 1.1f; pos[1] += (cubeSize * 2.0f + spacing); } } createLargeMeshBody(); } void BenchmarkDemo::initRays() { raycastBar = btRaycastBar2(2500.0, 0, 50.0, m_guiHelper); } void BenchmarkDemo::castRays() { raycastBar.cast(m_dynamicsWorld, m_multithreadedWorld); } void BenchmarkDemo::createTest7() { createTest6(); setCameraDistance(btScalar(150.)); initRays(); } void BenchmarkDemo::createTest8() { float dist = 8; float pitch = -15; float yaw = 20; float targetPos[3] = {0, 1, 0}; m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]); // Create a shape and rigid body for each Voronoi cell. const float fallHeight = 3.5f; for (int i=0; iaddPoint(vtx); verts += 3; } shp->initializePolyhedralFeatures(); shp->setMargin(0.04f); btTransform transform; transform.setIdentity(); transform.setOrigin(btVector3(origin[0],origin[1]+fallHeight,origin[2])); const float mass = halton_volu[i]; btVector3 inertia(0,0,0); shp->calculateLocalInertia(mass, inertia); btRigidBody::btRigidBodyConstructionInfo ci(mass, 0, shp, inertia); ci.m_startWorldTransform = transform; btRigidBody* body = new btRigidBody(ci); body->setFriction(0.6f); m_dynamicsWorld->addRigidBody(body); } btContactSolverInfo& si = m_dynamicsWorld->getSolverInfo(); si.m_numIterations = 20; si.m_erp = 0.8f; si.m_erp2 = si.m_erp / 2; si.m_globalCfm = 0.015f; // Create a ground plane btCollisionShape* groundplane = new btStaticPlaneShape(btVector3(0,1,0),0); groundplane->setMargin(0.04f); btRigidBody::btRigidBodyConstructionInfo rc(0.0f, 0, groundplane, btVector3(0,0,0)); btRigidBody* groundbody = new btRigidBody(rc); m_dynamicsWorld->addRigidBody(groundbody); #if 0 // Use SAT for slower, but better contact generation. btDispatcherInfo& di = m_dynamicsWorld->getDispatchInfo(); di.m_enableSatConvex = true; #endif } void BenchmarkDemo::exitPhysics() { int i; for (i = 0; i < m_ragdolls.size(); i++) { RagDoll* doll = m_ragdolls[i]; delete doll; } m_ragdolls.clear(); CommonRigidBodyMTBase::exitPhysics(); } CommonExampleInterface* BenchmarkCreateFunc(struct CommonExampleOptions& options) { return new BenchmarkDemo(options.m_guiHelper, options.m_option); }