/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2015 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "ConstraintDemo.h" #include "btBulletDynamicsCommon.h" #include "LinearMath/btIDebugDraw.h" #include //printf debugging #include #include "../CommonInterfaces/CommonRigidBodyBase.h" ///AllConstraintDemo shows how to create a constraint, like Hinge or btGenericD6constraint class AllConstraintDemo : public CommonRigidBodyBase { //keep track of variables to delete memory at the end void setupEmptyDynamicsWorld(); public: AllConstraintDemo(struct GUIHelperInterface* helper); virtual ~AllConstraintDemo(); virtual void initPhysics(); virtual void exitPhysics(); virtual void resetCamera() { float dist = 27; float pitch = -30; float yaw = 720; float targetPos[3] = {2, 0, -10}; m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]); } virtual bool keyboardCallback(int key, int state); // for cone-twist motor driving float m_Time; class btConeTwistConstraint* m_ctc; }; #define ENABLE_ALL_DEMOS 1 #define CUBE_HALF_EXTENTS 1.f #define SIMD_PI_2 ((SIMD_PI)*0.5f) #define SIMD_PI_4 ((SIMD_PI)*0.25f) btTransform sliderTransform; btVector3 lowerSliderLimit = btVector3(-10, 0, 0); btVector3 hiSliderLimit = btVector3(10, 0, 0); btRigidBody* d6body0 = 0; btHingeConstraint* spDoorHinge = NULL; btHingeConstraint* spHingeDynAB = NULL; btGeneric6DofConstraint* spSlider6Dof = NULL; static bool s_bTestConeTwistMotor = false; void AllConstraintDemo::setupEmptyDynamicsWorld() { m_collisionConfiguration = new btDefaultCollisionConfiguration(); m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration); m_broadphase = new btDbvtBroadphase(); m_solver = new btSequentialImpulseConstraintSolver(); m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher, m_broadphase, m_solver, m_collisionConfiguration); } void AllConstraintDemo::initPhysics() { m_guiHelper->setUpAxis(1); m_Time = 0; setupEmptyDynamicsWorld(); m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld); //btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(50.),btScalar(40.),btScalar(50.))); btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0, 1, 0), 40); m_collisionShapes.push_back(groundShape); btTransform groundTransform; groundTransform.setIdentity(); groundTransform.setOrigin(btVector3(0, -56, 0)); btRigidBody* groundBody; groundBody = createRigidBody(0, groundTransform, groundShape); btCollisionShape* shape = new btBoxShape(btVector3(CUBE_HALF_EXTENTS, CUBE_HALF_EXTENTS, CUBE_HALF_EXTENTS)); m_collisionShapes.push_back(shape); btTransform trans; trans.setIdentity(); trans.setOrigin(btVector3(0, 20, 0)); float mass = 1.f; #if ENABLE_ALL_DEMOS ///gear constraint demo #define THETA SIMD_PI / 4.f #define L_1 (2 - std::tan(THETA)) #define L_2 (1 / std::cos(THETA)) #define RATIO L_2 / L_1 btRigidBody* bodyA = 0; btRigidBody* bodyB = 0; { btCollisionShape* cylA = new btCylinderShape(btVector3(0.2, 0.25, 0.2)); btCollisionShape* cylB = new btCylinderShape(btVector3(L_1, 0.025, L_1)); btCompoundShape* cyl0 = new btCompoundShape(); cyl0->addChildShape(btTransform::getIdentity(), cylA); cyl0->addChildShape(btTransform::getIdentity(), cylB); btScalar mass = 6.28; btVector3 localInertia; cyl0->calculateLocalInertia(mass, localInertia); btRigidBody::btRigidBodyConstructionInfo ci(mass, 0, cyl0, localInertia); ci.m_startWorldTransform.setOrigin(btVector3(-8, 1, -8)); btRigidBody* body = new btRigidBody(ci); //1,0,cyl0,localInertia); m_dynamicsWorld->addRigidBody(body); body->setLinearFactor(btVector3(0, 0, 0)); body->setAngularFactor(btVector3(0, 1, 0)); bodyA = body; } { btCollisionShape* cylA = new btCylinderShape(btVector3(0.2, 0.26, 0.2)); btCollisionShape* cylB = new btCylinderShape(btVector3(L_2, 0.025, L_2)); btCompoundShape* cyl0 = new btCompoundShape(); cyl0->addChildShape(btTransform::getIdentity(), cylA); cyl0->addChildShape(btTransform::getIdentity(), cylB); btScalar mass = 6.28; btVector3 localInertia; cyl0->calculateLocalInertia(mass, localInertia); btRigidBody::btRigidBodyConstructionInfo ci(mass, 0, cyl0, localInertia); ci.m_startWorldTransform.setOrigin(btVector3(-10, 2, -8)); btQuaternion orn(btVector3(0, 0, 1), -THETA); ci.m_startWorldTransform.setRotation(orn); btRigidBody* body = new btRigidBody(ci); //1,0,cyl0,localInertia); body->setLinearFactor(btVector3(0, 0, 0)); btHingeConstraint* hinge = new btHingeConstraint(*body, btVector3(0, 0, 0), btVector3(0, 1, 0), true); m_dynamicsWorld->addConstraint(hinge); bodyB = body; body->setAngularVelocity(btVector3(0, 3, 0)); m_dynamicsWorld->addRigidBody(body); } btVector3 axisA(0, 1, 0); btVector3 axisB(0, 1, 0); btQuaternion orn(btVector3(0, 0, 1), -THETA); btMatrix3x3 mat(orn); axisB = mat.getRow(1); btGearConstraint* gear = new btGearConstraint(*bodyA, *bodyB, axisA, axisB, RATIO); m_dynamicsWorld->addConstraint(gear, true); #endif #if ENABLE_ALL_DEMOS //point to point constraint with a breaking threshold { trans.setIdentity(); trans.setOrigin(btVector3(1, 30, -5)); createRigidBody(mass, trans, shape); trans.setOrigin(btVector3(0, 0, -5)); btRigidBody* body0 = createRigidBody(mass, trans, shape); trans.setOrigin(btVector3(2 * CUBE_HALF_EXTENTS, 20, 0)); mass = 1.f; // btRigidBody* body1 = 0;//createRigidBody( mass,trans,shape); btVector3 pivotInA(CUBE_HALF_EXTENTS, CUBE_HALF_EXTENTS, 0); btTypedConstraint* p2p = new btPoint2PointConstraint(*body0, pivotInA); m_dynamicsWorld->addConstraint(p2p); p2p->setBreakingImpulseThreshold(10.2); p2p->setDbgDrawSize(btScalar(5.f)); } #endif #if ENABLE_ALL_DEMOS //point to point constraint (ball socket) { btRigidBody* body0 = createRigidBody(mass, trans, shape); trans.setOrigin(btVector3(2 * CUBE_HALF_EXTENTS, 20, 0)); mass = 1.f; // btRigidBody* body1 = 0;//createRigidBody( mass,trans,shape); // btRigidBody* body1 = createRigidBody( 0.0,trans,0); //body1->setActivationState(DISABLE_DEACTIVATION); //body1->setDamping(0.3,0.3); btVector3 pivotInA(CUBE_HALF_EXTENTS, -CUBE_HALF_EXTENTS, -CUBE_HALF_EXTENTS); btVector3 axisInA(0, 0, 1); // btVector3 pivotInB = body1 ? body1->getCenterOfMassTransform().inverse()(body0->getCenterOfMassTransform()(pivotInA)) : pivotInA; // btVector3 axisInB = body1? // (body1->getCenterOfMassTransform().getBasis().inverse()*(body1->getCenterOfMassTransform().getBasis() * axisInA)) : body0->getCenterOfMassTransform().getBasis() * axisInA; #define P2P #ifdef P2P btTypedConstraint* p2p = new btPoint2PointConstraint(*body0, pivotInA); //btTypedConstraint* p2p = new btPoint2PointConstraint(*body0,*body1,pivotInA,pivotInB); //btTypedConstraint* hinge = new btHingeConstraint(*body0,*body1,pivotInA,pivotInB,axisInA,axisInB); m_dynamicsWorld->addConstraint(p2p); p2p->setDbgDrawSize(btScalar(5.f)); #else btHingeConstraint* hinge = new btHingeConstraint(*body0, pivotInA, axisInA); //use zero targetVelocity and a small maxMotorImpulse to simulate joint friction //float targetVelocity = 0.f; //float maxMotorImpulse = 0.01; float targetVelocity = 1.f; float maxMotorImpulse = 1.0f; hinge->enableAngularMotor(true, targetVelocity, maxMotorImpulse); m_dynamicsWorld->addConstraint(hinge); hinge->setDbgDrawSize(btScalar(5.f)); #endif //P2P } #endif #if ENABLE_ALL_DEMOS { btTransform trans; trans.setIdentity(); btVector3 worldPos(-20, 0, 30); trans.setOrigin(worldPos); btTransform frameInA, frameInB; frameInA = btTransform::getIdentity(); frameInB = btTransform::getIdentity(); btRigidBody* pRbA1 = createRigidBody(mass, trans, shape); // btRigidBody* pRbA1 = createRigidBody(0.f, trans, shape); pRbA1->setActivationState(DISABLE_DEACTIVATION); // add dynamic rigid body B1 worldPos.setValue(-30, 0, 30); trans.setOrigin(worldPos); btRigidBody* pRbB1 = createRigidBody(mass, trans, shape); // btRigidBody* pRbB1 = createRigidBody(0.f, trans, shape); pRbB1->setActivationState(DISABLE_DEACTIVATION); // create slider constraint between A1 and B1 and add it to world btSliderConstraint* spSlider1 = new btSliderConstraint(*pRbA1, *pRbB1, frameInA, frameInB, true); // spSlider1 = new btSliderConstraint(*pRbA1, *pRbB1, frameInA, frameInB, false); spSlider1->setLowerLinLimit(-15.0F); spSlider1->setUpperLinLimit(-5.0F); // spSlider1->setLowerLinLimit(5.0F); // spSlider1->setUpperLinLimit(15.0F); // spSlider1->setLowerLinLimit(-10.0F); // spSlider1->setUpperLinLimit(-10.0F); spSlider1->setLowerAngLimit(-SIMD_PI / 3.0F); spSlider1->setUpperAngLimit(SIMD_PI / 3.0F); m_dynamicsWorld->addConstraint(spSlider1, true); spSlider1->setDbgDrawSize(btScalar(5.f)); } #endif #if ENABLE_ALL_DEMOS //create a slider, using the generic D6 constraint { mass = 1.f; btVector3 sliderWorldPos(0, 10, 0); btVector3 sliderAxis(1, 0, 0); btScalar angle = 0.f; //SIMD_RADS_PER_DEG * 10.f; btMatrix3x3 sliderOrientation(btQuaternion(sliderAxis, angle)); trans.setIdentity(); trans.setOrigin(sliderWorldPos); //trans.setBasis(sliderOrientation); sliderTransform = trans; d6body0 = createRigidBody(mass, trans, shape); d6body0->setActivationState(DISABLE_DEACTIVATION); btRigidBody* fixedBody1 = createRigidBody(0, trans, 0); m_dynamicsWorld->addRigidBody(fixedBody1); btTransform frameInA, frameInB; frameInA = btTransform::getIdentity(); frameInB = btTransform::getIdentity(); frameInA.setOrigin(btVector3(0., 5., 0.)); frameInB.setOrigin(btVector3(0., 5., 0.)); // bool useLinearReferenceFrameA = false;//use fixed frame B for linear llimits bool useLinearReferenceFrameA = true; //use fixed frame A for linear llimits spSlider6Dof = new btGeneric6DofConstraint(*fixedBody1, *d6body0, frameInA, frameInB, useLinearReferenceFrameA); spSlider6Dof->setLinearLowerLimit(lowerSliderLimit); spSlider6Dof->setLinearUpperLimit(hiSliderLimit); //range should be small, otherwise singularities will 'explode' the constraint // spSlider6Dof->setAngularLowerLimit(btVector3(-1.5,0,0)); // spSlider6Dof->setAngularUpperLimit(btVector3(1.5,0,0)); // spSlider6Dof->setAngularLowerLimit(btVector3(0,0,0)); // spSlider6Dof->setAngularUpperLimit(btVector3(0,0,0)); spSlider6Dof->setAngularLowerLimit(btVector3(-SIMD_PI, 0, 0)); spSlider6Dof->setAngularUpperLimit(btVector3(1.5, 0, 0)); spSlider6Dof->getTranslationalLimitMotor()->m_enableMotor[0] = true; spSlider6Dof->getTranslationalLimitMotor()->m_targetVelocity[0] = -5.0f; spSlider6Dof->getTranslationalLimitMotor()->m_maxMotorForce[0] = 6.0f; m_dynamicsWorld->addConstraint(spSlider6Dof); spSlider6Dof->setDbgDrawSize(btScalar(5.f)); } #endif #if ENABLE_ALL_DEMOS { // create a door using hinge constraint attached to the world btCollisionShape* pDoorShape = new btBoxShape(btVector3(2.0f, 5.0f, 0.2f)); m_collisionShapes.push_back(pDoorShape); btTransform doorTrans; doorTrans.setIdentity(); doorTrans.setOrigin(btVector3(-5.0f, -2.0f, 0.0f)); btRigidBody* pDoorBody = createRigidBody(1.0, doorTrans, pDoorShape); pDoorBody->setActivationState(DISABLE_DEACTIVATION); const btVector3 btPivotA(10.f + 2.1f, -2.0f, 0.0f); // right next to the door slightly outside btVector3 btAxisA(0.0f, 1.0f, 0.0f); // pointing upwards, aka Y-axis spDoorHinge = new btHingeConstraint(*pDoorBody, btPivotA, btAxisA); // spDoorHinge->setLimit( 0.0f, SIMD_PI_2 ); // test problem values // spDoorHinge->setLimit( -SIMD_PI, SIMD_PI*0.8f); // spDoorHinge->setLimit( 1.f, -1.f); // spDoorHinge->setLimit( -SIMD_PI*0.8f, SIMD_PI); // spDoorHinge->setLimit( -SIMD_PI*0.8f, SIMD_PI, 0.9f, 0.3f, 0.0f); // spDoorHinge->setLimit( -SIMD_PI*0.8f, SIMD_PI, 0.9f, 0.01f, 0.0f); // "sticky limits" spDoorHinge->setLimit(-SIMD_PI * 0.25f, SIMD_PI * 0.25f); // spDoorHinge->setLimit( 0.0f, 0.0f ); m_dynamicsWorld->addConstraint(spDoorHinge); spDoorHinge->setDbgDrawSize(btScalar(5.f)); //doorTrans.setOrigin(btVector3(-5.0f, 2.0f, 0.0f)); //btRigidBody* pDropBody = createRigidBody( 10.0, doorTrans, shape); } #endif #if ENABLE_ALL_DEMOS { // create a generic 6DOF constraint btTransform tr; tr.setIdentity(); tr.setOrigin(btVector3(btScalar(10.), btScalar(6.), btScalar(0.))); tr.getBasis().setEulerZYX(0, 0, 0); // btRigidBody* pBodyA = createRigidBody( mass, tr, shape); btRigidBody* pBodyA = createRigidBody(0.0, tr, shape); // btRigidBody* pBodyA = createRigidBody( 0.0, tr, 0); pBodyA->setActivationState(DISABLE_DEACTIVATION); tr.setIdentity(); tr.setOrigin(btVector3(btScalar(0.), btScalar(6.), btScalar(0.))); tr.getBasis().setEulerZYX(0, 0, 0); btRigidBody* pBodyB = createRigidBody(mass, tr, shape); // btRigidBody* pBodyB = createRigidBody(0.f, tr, shape); pBodyB->setActivationState(DISABLE_DEACTIVATION); btTransform frameInA, frameInB; frameInA = btTransform::getIdentity(); frameInA.setOrigin(btVector3(btScalar(-5.), btScalar(0.), btScalar(0.))); frameInB = btTransform::getIdentity(); frameInB.setOrigin(btVector3(btScalar(5.), btScalar(0.), btScalar(0.))); btGeneric6DofConstraint* pGen6DOF = new btGeneric6DofConstraint(*pBodyA, *pBodyB, frameInA, frameInB, true); // btGeneric6DofConstraint* pGen6DOF = new btGeneric6DofConstraint(*pBodyA, *pBodyB, frameInA, frameInB, false); pGen6DOF->setLinearLowerLimit(btVector3(-10., -2., -1.)); pGen6DOF->setLinearUpperLimit(btVector3(10., 2., 1.)); // pGen6DOF->setLinearLowerLimit(btVector3(-10., 0., 0.)); // pGen6DOF->setLinearUpperLimit(btVector3(10., 0., 0.)); // pGen6DOF->setLinearLowerLimit(btVector3(0., 0., 0.)); // pGen6DOF->setLinearUpperLimit(btVector3(0., 0., 0.)); // pGen6DOF->getTranslationalLimitMotor()->m_enableMotor[0] = true; // pGen6DOF->getTranslationalLimitMotor()->m_targetVelocity[0] = 5.0f; // pGen6DOF->getTranslationalLimitMotor()->m_maxMotorForce[0] = 6.0f; // pGen6DOF->setAngularLowerLimit(btVector3(0., SIMD_HALF_PI*0.9, 0.)); // pGen6DOF->setAngularUpperLimit(btVector3(0., -SIMD_HALF_PI*0.9, 0.)); // pGen6DOF->setAngularLowerLimit(btVector3(0., 0., -SIMD_HALF_PI)); // pGen6DOF->setAngularUpperLimit(btVector3(0., 0., SIMD_HALF_PI)); pGen6DOF->setAngularLowerLimit(btVector3(-SIMD_HALF_PI * 0.5f, -0.75, -SIMD_HALF_PI * 0.8f)); pGen6DOF->setAngularUpperLimit(btVector3(SIMD_HALF_PI * 0.5f, 0.75, SIMD_HALF_PI * 0.8f)); // pGen6DOF->setAngularLowerLimit(btVector3(0.f, -0.75, SIMD_HALF_PI * 0.8f)); // pGen6DOF->setAngularUpperLimit(btVector3(0.f, 0.75, -SIMD_HALF_PI * 0.8f)); // pGen6DOF->setAngularLowerLimit(btVector3(0.f, -SIMD_HALF_PI * 0.8f, SIMD_HALF_PI * 1.98f)); // pGen6DOF->setAngularUpperLimit(btVector3(0.f, SIMD_HALF_PI * 0.8f, -SIMD_HALF_PI * 1.98f)); // pGen6DOF->setAngularLowerLimit(btVector3(-0.75,-0.5, -0.5)); // pGen6DOF->setAngularUpperLimit(btVector3(0.75,0.5, 0.5)); // pGen6DOF->setAngularLowerLimit(btVector3(-0.75,0., 0.)); // pGen6DOF->setAngularUpperLimit(btVector3(0.75,0., 0.)); // pGen6DOF->setAngularLowerLimit(btVector3(0., -0.7,0.)); // pGen6DOF->setAngularUpperLimit(btVector3(0., 0.7, 0.)); // pGen6DOF->setAngularLowerLimit(btVector3(-1., 0.,0.)); // pGen6DOF->setAngularUpperLimit(btVector3(1., 0., 0.)); m_dynamicsWorld->addConstraint(pGen6DOF, true); pGen6DOF->setDbgDrawSize(btScalar(5.f)); } #endif #if ENABLE_ALL_DEMOS { // create a ConeTwist constraint btTransform tr; tr.setIdentity(); tr.setOrigin(btVector3(btScalar(-10.), btScalar(5.), btScalar(0.))); tr.getBasis().setEulerZYX(0, 0, 0); btRigidBody* pBodyA = createRigidBody(1.0, tr, shape); // btRigidBody* pBodyA = createRigidBody( 0.0, tr, shape); pBodyA->setActivationState(DISABLE_DEACTIVATION); tr.setIdentity(); tr.setOrigin(btVector3(btScalar(-10.), btScalar(-5.), btScalar(0.))); tr.getBasis().setEulerZYX(0, 0, 0); btRigidBody* pBodyB = createRigidBody(0.0, tr, shape); // btRigidBody* pBodyB = createRigidBody(1.0, tr, shape); btTransform frameInA, frameInB; frameInA = btTransform::getIdentity(); frameInA.getBasis().setEulerZYX(0, 0, SIMD_PI_2); frameInA.setOrigin(btVector3(btScalar(0.), btScalar(-5.), btScalar(0.))); frameInB = btTransform::getIdentity(); frameInB.getBasis().setEulerZYX(0, 0, SIMD_PI_2); frameInB.setOrigin(btVector3(btScalar(0.), btScalar(5.), btScalar(0.))); m_ctc = new btConeTwistConstraint(*pBodyA, *pBodyB, frameInA, frameInB); // m_ctc->setLimit(btScalar(SIMD_PI_4), btScalar(SIMD_PI_4), btScalar(SIMD_PI) * 0.8f); // m_ctc->setLimit(btScalar(SIMD_PI_4*0.6f), btScalar(SIMD_PI_4), btScalar(SIMD_PI) * 0.8f, 1.0f); // soft limit == hard limit m_ctc->setLimit(btScalar(SIMD_PI_4 * 0.6f), btScalar(SIMD_PI_4), btScalar(SIMD_PI) * 0.8f, 0.5f); m_dynamicsWorld->addConstraint(m_ctc, true); m_ctc->setDbgDrawSize(btScalar(5.f)); // s_bTestConeTwistMotor = true; // use only with old solver for now s_bTestConeTwistMotor = false; } #endif #if ENABLE_ALL_DEMOS { // Hinge connected to the world, with motor (to hinge motor with new and old constraint solver) btTransform tr; tr.setIdentity(); tr.setOrigin(btVector3(btScalar(0.), btScalar(0.), btScalar(0.))); btRigidBody* pBody = createRigidBody(1.0, tr, shape); pBody->setActivationState(DISABLE_DEACTIVATION); const btVector3 btPivotA(10.0f, 0.0f, 0.0f); btVector3 btAxisA(0.0f, 0.0f, 1.0f); btHingeConstraint* pHinge = new btHingeConstraint(*pBody, btPivotA, btAxisA); // pHinge->enableAngularMotor(true, -1.0, 0.165); // use for the old solver pHinge->enableAngularMotor(true, -1.0f, 1.65f); // use for the new SIMD solver m_dynamicsWorld->addConstraint(pHinge); pHinge->setDbgDrawSize(btScalar(5.f)); } #endif #if ENABLE_ALL_DEMOS { // create a universal joint using generic 6DOF constraint // create two rigid bodies // static bodyA (parent) on top: btTransform tr; tr.setIdentity(); tr.setOrigin(btVector3(btScalar(20.), btScalar(4.), btScalar(0.))); btRigidBody* pBodyA = createRigidBody(0.0, tr, shape); pBodyA->setActivationState(DISABLE_DEACTIVATION); // dynamic bodyB (child) below it : tr.setIdentity(); tr.setOrigin(btVector3(btScalar(20.), btScalar(0.), btScalar(0.))); btRigidBody* pBodyB = createRigidBody(1.0, tr, shape); pBodyB->setActivationState(DISABLE_DEACTIVATION); // add some (arbitrary) data to build constraint frames btVector3 parentAxis(1.f, 0.f, 0.f); btVector3 childAxis(0.f, 0.f, 1.f); btVector3 anchor(20.f, 2.f, 0.f); btUniversalConstraint* pUniv = new btUniversalConstraint(*pBodyA, *pBodyB, anchor, parentAxis, childAxis); pUniv->setLowerLimit(-SIMD_HALF_PI * 0.5f, -SIMD_HALF_PI * 0.5f); pUniv->setUpperLimit(SIMD_HALF_PI * 0.5f, SIMD_HALF_PI * 0.5f); // add constraint to world m_dynamicsWorld->addConstraint(pUniv, true); // draw constraint frames and limits for debugging pUniv->setDbgDrawSize(btScalar(5.f)); } #endif #if ENABLE_ALL_DEMOS { // create a generic 6DOF constraint with springs btTransform tr; tr.setIdentity(); tr.setOrigin(btVector3(btScalar(-20.), btScalar(16.), btScalar(0.))); tr.getBasis().setEulerZYX(0, 0, 0); btRigidBody* pBodyA = createRigidBody(0.0, tr, shape); pBodyA->setActivationState(DISABLE_DEACTIVATION); tr.setIdentity(); tr.setOrigin(btVector3(btScalar(-10.), btScalar(16.), btScalar(0.))); tr.getBasis().setEulerZYX(0, 0, 0); btRigidBody* pBodyB = createRigidBody(1.0, tr, shape); pBodyB->setActivationState(DISABLE_DEACTIVATION); btTransform frameInA, frameInB; frameInA = btTransform::getIdentity(); frameInA.setOrigin(btVector3(btScalar(10.), btScalar(0.), btScalar(0.))); frameInB = btTransform::getIdentity(); frameInB.setOrigin(btVector3(btScalar(0.), btScalar(0.), btScalar(0.))); btGeneric6DofSpringConstraint* pGen6DOFSpring = new btGeneric6DofSpringConstraint(*pBodyA, *pBodyB, frameInA, frameInB, true); pGen6DOFSpring->setLinearUpperLimit(btVector3(5., 0., 0.)); pGen6DOFSpring->setLinearLowerLimit(btVector3(-5., 0., 0.)); pGen6DOFSpring->setAngularLowerLimit(btVector3(0.f, 0.f, -1.5f)); pGen6DOFSpring->setAngularUpperLimit(btVector3(0.f, 0.f, 1.5f)); m_dynamicsWorld->addConstraint(pGen6DOFSpring, true); pGen6DOFSpring->setDbgDrawSize(btScalar(5.f)); pGen6DOFSpring->enableSpring(0, true); pGen6DOFSpring->setStiffness(0, 39.478f); pGen6DOFSpring->setDamping(0, 0.5f); pGen6DOFSpring->enableSpring(5, true); pGen6DOFSpring->setStiffness(5, 39.478f); pGen6DOFSpring->setDamping(0, 0.3f); pGen6DOFSpring->setEquilibriumPoint(); } #endif #if ENABLE_ALL_DEMOS { // create a Hinge2 joint // create two rigid bodies // static bodyA (parent) on top: btTransform tr; tr.setIdentity(); tr.setOrigin(btVector3(btScalar(-20.), btScalar(4.), btScalar(0.))); btRigidBody* pBodyA = createRigidBody(0.0, tr, shape); pBodyA->setActivationState(DISABLE_DEACTIVATION); // dynamic bodyB (child) below it : tr.setIdentity(); tr.setOrigin(btVector3(btScalar(-20.), btScalar(0.), btScalar(0.))); btRigidBody* pBodyB = createRigidBody(1.0, tr, shape); pBodyB->setActivationState(DISABLE_DEACTIVATION); // add some data to build constraint frames btVector3 parentAxis(0.f, 1.f, 0.f); btVector3 childAxis(1.f, 0.f, 0.f); btVector3 anchor(-20.f, 0.f, 0.f); btHinge2Constraint* pHinge2 = new btHinge2Constraint(*pBodyA, *pBodyB, anchor, parentAxis, childAxis); pHinge2->setLowerLimit(-SIMD_HALF_PI * 0.5f); pHinge2->setUpperLimit(SIMD_HALF_PI * 0.5f); // add constraint to world m_dynamicsWorld->addConstraint(pHinge2, true); // draw constraint frames and limits for debugging pHinge2->setDbgDrawSize(btScalar(5.f)); } #endif #if ENABLE_ALL_DEMOS { // create a Hinge joint between two dynamic bodies // create two rigid bodies // static bodyA (parent) on top: btTransform tr; tr.setIdentity(); tr.setOrigin(btVector3(btScalar(-20.), btScalar(-2.), btScalar(0.))); btRigidBody* pBodyA = createRigidBody(1.0f, tr, shape); pBodyA->setActivationState(DISABLE_DEACTIVATION); // dynamic bodyB: tr.setIdentity(); tr.setOrigin(btVector3(btScalar(-30.), btScalar(-2.), btScalar(0.))); btRigidBody* pBodyB = createRigidBody(10.0, tr, shape); pBodyB->setActivationState(DISABLE_DEACTIVATION); // add some data to build constraint frames btVector3 axisA(0.f, 1.f, 0.f); btVector3 axisB(0.f, 1.f, 0.f); btVector3 pivotA(-5.f, 0.f, 0.f); btVector3 pivotB(5.f, 0.f, 0.f); spHingeDynAB = new btHingeConstraint(*pBodyA, *pBodyB, pivotA, pivotB, axisA, axisB); spHingeDynAB->setLimit(-SIMD_HALF_PI * 0.5f, SIMD_HALF_PI * 0.5f); // add constraint to world m_dynamicsWorld->addConstraint(spHingeDynAB, true); // draw constraint frames and limits for debugging spHingeDynAB->setDbgDrawSize(btScalar(5.f)); } #endif #if ENABLE_ALL_DEMOS { // 6DOF connected to the world, with motor btTransform tr; tr.setIdentity(); tr.setOrigin(btVector3(btScalar(10.), btScalar(-15.), btScalar(0.))); btRigidBody* pBody = createRigidBody(1.0, tr, shape); pBody->setActivationState(DISABLE_DEACTIVATION); btTransform frameB; frameB.setIdentity(); btGeneric6DofConstraint* pGen6Dof = new btGeneric6DofConstraint(*pBody, frameB, false); m_dynamicsWorld->addConstraint(pGen6Dof); pGen6Dof->setDbgDrawSize(btScalar(5.f)); pGen6Dof->setAngularLowerLimit(btVector3(0, 0, 0)); pGen6Dof->setAngularUpperLimit(btVector3(0, 0, 0)); pGen6Dof->setLinearLowerLimit(btVector3(-10., 0, 0)); pGen6Dof->setLinearUpperLimit(btVector3(10., 0, 0)); pGen6Dof->getTranslationalLimitMotor()->m_enableMotor[0] = true; pGen6Dof->getTranslationalLimitMotor()->m_targetVelocity[0] = 5.0f; pGen6Dof->getTranslationalLimitMotor()->m_maxMotorForce[0] = 6.0f; } #endif m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld); } void AllConstraintDemo::exitPhysics() { int i; //removed/delete constraints for (i = m_dynamicsWorld->getNumConstraints() - 1; i >= 0; i--) { btTypedConstraint* constraint = m_dynamicsWorld->getConstraint(i); m_dynamicsWorld->removeConstraint(constraint); delete constraint; } m_ctc = NULL; //remove the rigidbodies from the dynamics world and delete them for (i = m_dynamicsWorld->getNumCollisionObjects() - 1; i >= 0; i--) { btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i]; btRigidBody* body = btRigidBody::upcast(obj); if (body && body->getMotionState()) { delete body->getMotionState(); } m_dynamicsWorld->removeCollisionObject(obj); delete obj; } //delete collision shapes for (int j = 0; j < m_collisionShapes.size(); j++) { btCollisionShape* shape = m_collisionShapes[j]; delete shape; } m_collisionShapes.clear(); //delete dynamics world delete m_dynamicsWorld; m_dynamicsWorld = 0; //delete solver delete m_solver; m_solver = 0; //delete broadphase delete m_broadphase; m_broadphase = 0; //delete dispatcher delete m_dispatcher; delete m_collisionConfiguration; } AllConstraintDemo::AllConstraintDemo(struct GUIHelperInterface* helper) : CommonRigidBodyBase(helper) { } AllConstraintDemo::~AllConstraintDemo() { //cleanup in the reverse order of creation/initialization btAssert(m_dynamicsWorld == 0); } #if 0 void AllConstraintDemo::clientMoveAndDisplay() { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); float dt = float(getDeltaTimeMicroseconds()) * 0.000001f; //printf("dt = %f: ",dt); // drive cone-twist motor m_Time += 0.03f; if (s_bTestConeTwistMotor) { // this works only for obsolete constraint solver for now // build cone target btScalar t = 1.25f*m_Time; btVector3 axis(0,sin(t),cos(t)); axis.normalize(); btQuaternion q1(axis, 0.75f*SIMD_PI); // build twist target //btQuaternion q2(0,0,0); //btQuaternion q2(btVehictor3(1,0,0), -0.3*sin(m_Time)); btQuaternion q2(btVector3(1,0,0), -1.49f*btSin(1.5f*m_Time)); // compose cone + twist and set target q1 = q1 * q2; m_ctc->enableMotor(true); m_ctc->setMotorTargetInConstraintSpace(q1); } { static bool once = true; if ( m_dynamicsWorld->getDebugDrawer() && once) { m_dynamicsWorld->getDebugDrawer()->setDebugMode(btIDebugDraw::DBG_DrawConstraints+btIDebugDraw::DBG_DrawConstraintLimits); once=false; } } { //during idle mode, just run 1 simulation step maximum int maxSimSubSteps = m_idle ? 1 : 1; if (m_idle) dt = 1.0f/420.f; int numSimSteps = m_dynamicsWorld->stepSimulation(dt,maxSimSubSteps); //optional but useful: debug drawing m_dynamicsWorld->debugDrawWorld(); bool verbose = false; if (verbose) { if (!numSimSteps) printf("Interpolated transforms\n"); else { if (numSimSteps > maxSimSubSteps) { //detect dropping frames printf("Dropped (%i) simulation steps out of %i\n",numSimSteps - maxSimSubSteps,numSimSteps); } else { printf("Simulated (%i) steps\n",numSimSteps); } } } } renderme(); // drawLimit(); glFlush(); swapBuffers(); } void AllConstraintDemo::displayCallback(void) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); if (m_dynamicsWorld) m_dynamicsWorld->debugDrawWorld(); // drawLimit(); renderme(); glFlush(); swapBuffers(); } #endif bool AllConstraintDemo::keyboardCallback(int key, int state) { bool handled = false; switch (key) { case 'O': { bool offectOnOff; if (spDoorHinge) { offectOnOff = spDoorHinge->getUseFrameOffset(); offectOnOff = !offectOnOff; spDoorHinge->setUseFrameOffset(offectOnOff); printf("DoorHinge %s frame offset\n", offectOnOff ? "uses" : "does not use"); } if (spHingeDynAB) { offectOnOff = spHingeDynAB->getUseFrameOffset(); offectOnOff = !offectOnOff; spHingeDynAB->setUseFrameOffset(offectOnOff); printf("HingeDynAB %s frame offset\n", offectOnOff ? "uses" : "does not use"); } if (spSlider6Dof) { offectOnOff = spSlider6Dof->getUseFrameOffset(); offectOnOff = !offectOnOff; spSlider6Dof->setUseFrameOffset(offectOnOff); printf("Slider6Dof %s frame offset\n", offectOnOff ? "uses" : "does not use"); } } handled = true; break; default: { } break; } return handled; } class CommonExampleInterface* AllConstraintCreateFunc(struct CommonExampleOptions& options) { return new AllConstraintDemo(options.m_guiHelper); }