/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2019 Google Inc. http://bulletphysics.org This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "DeformableMultibody.h" ///btBulletDynamicsCommon.h is the main Bullet include file, contains most common include files. #include "btBulletDynamicsCommon.h" #include "BulletSoftBody/btDeformableMultiBodyDynamicsWorld.h" #include "BulletSoftBody/btSoftBody.h" #include "BulletSoftBody/btSoftBodyHelpers.h" #include "BulletSoftBody/btDeformableBodySolver.h" #include "BulletSoftBody/btSoftBodyRigidBodyCollisionConfiguration.h" #include "BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h" #include //printf debugging #include "../CommonInterfaces/CommonRigidBodyBase.h" #include "../Utils/b3ResourcePath.h" #include "../SoftDemo/BunnyMesh.h" #include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h" #include "BulletDynamics/Featherstone/btMultiBodyJointFeedback.h" #include "../CommonInterfaces/CommonDeformableBodyBase.h" #include "../Utils/b3ResourcePath.h" ///The DeformableMultibody demo deformable bodies self-collision static bool g_floatingBase = true; static float friction = 1.; class DeformableMultibody : public CommonDeformableBodyBase { public: DeformableMultibody(struct GUIHelperInterface* helper) :CommonDeformableBodyBase(helper) { } virtual ~DeformableMultibody() { } void initPhysics(); void exitPhysics(); void resetCamera() { float dist = 30; float pitch = -30; float yaw = 100; float targetPos[3] = {0, -10, 0}; m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]); } virtual void stepSimulation(float deltaTime); btMultiBody* createFeatherstoneMultiBody_testMultiDof(class btMultiBodyDynamicsWorld* world, int numLinks, const btVector3& basePosition, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents, bool spherical = false, bool floating = false); void addColliders_testMultiDof(btMultiBody* pMultiBody, btMultiBodyDynamicsWorld* pWorld, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents); virtual void renderScene() { CommonDeformableBodyBase::renderScene(); btDeformableMultiBodyDynamicsWorld* deformableWorld = getDeformableDynamicsWorld(); for (int i = 0; i < deformableWorld->getSoftBodyArray().size(); i++) { btSoftBody* psb = (btSoftBody*)deformableWorld->getSoftBodyArray()[i]; { btSoftBodyHelpers::DrawFrame(psb, deformableWorld->getDebugDrawer()); btSoftBodyHelpers::Draw(psb, deformableWorld->getDebugDrawer(), fDrawFlags::Faces);// deformableWorld->getDrawFlags()); } } } }; void DeformableMultibody::initPhysics() { m_guiHelper->setUpAxis(1); ///collision configuration contains default setup for memory, collision setup m_collisionConfiguration = new btSoftBodyRigidBodyCollisionConfiguration(); ///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded) m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration); m_broadphase = new btDbvtBroadphase(); btDeformableBodySolver* deformableBodySolver = new btDeformableBodySolver(); btDeformableMultiBodyConstraintSolver* sol; sol = new btDeformableMultiBodyConstraintSolver; sol->setDeformableSolver(deformableBodySolver); m_solver = sol; m_dynamicsWorld = new btDeformableMultiBodyDynamicsWorld(m_dispatcher, m_broadphase, sol, m_collisionConfiguration, deformableBodySolver); btVector3 gravity = btVector3(0, -10, 0); m_dynamicsWorld->setGravity(gravity); getDeformableDynamicsWorld()->getWorldInfo().m_gravity = gravity; getDeformableDynamicsWorld()->getWorldInfo().m_sparsesdf.setDefaultVoxelsz(0.25); getDeformableDynamicsWorld()->getWorldInfo().m_sparsesdf.Reset(); m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld); { ///create a ground btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(150.), btScalar(25.), btScalar(150.))); m_collisionShapes.push_back(groundShape); btTransform groundTransform; groundTransform.setIdentity(); groundTransform.setOrigin(btVector3(0, -40, 0)); groundTransform.setRotation(btQuaternion(btVector3(1, 0, 0), SIMD_PI * 0.)); //We can also use DemoApplication::localCreateRigidBody, but for clarity it is provided here: btScalar mass(0.); //rigidbody is dynamic if and only if mass is non zero, otherwise static bool isDynamic = (mass != 0.f); btVector3 localInertia(0, 0, 0); if (isDynamic) groundShape->calculateLocalInertia(mass, localInertia); //using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform); btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, groundShape, localInertia); btRigidBody* body = new btRigidBody(rbInfo); body->setFriction(0.5); //add the ground to the dynamics world m_dynamicsWorld->addRigidBody(body,1,1+2); } { bool damping = true; bool gyro = false; int numLinks = 4; bool spherical = false; //set it ot false -to use 1DoF hinges instead of 3DoF sphericals bool canSleep = false; bool selfCollide = true; btVector3 linkHalfExtents(.4, 1, .4); btVector3 baseHalfExtents(.4, 1, .4); btMultiBody* mbC = createFeatherstoneMultiBody_testMultiDof(m_dynamicsWorld, numLinks, btVector3(0.f, 10.f,0.f), linkHalfExtents, baseHalfExtents, spherical, g_floatingBase); mbC->setCanSleep(canSleep); mbC->setHasSelfCollision(selfCollide); mbC->setUseGyroTerm(gyro); // if (!damping) { mbC->setLinearDamping(0.0f); mbC->setAngularDamping(0.0f); } else { mbC->setLinearDamping(0.04f); mbC->setAngularDamping(0.04f); } if (numLinks > 0) { btScalar q0 = 0.f * SIMD_PI / 180.f; if (!spherical) { mbC->setJointPosMultiDof(0, &q0); } else { btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0); quat0.normalize(); mbC->setJointPosMultiDof(0, quat0); } } /// addColliders_testMultiDof(mbC, m_dynamicsWorld, baseHalfExtents, linkHalfExtents); } // create a patch of cloth { btScalar h = 0; const btScalar s = 4; btSoftBody* psb = btSoftBodyHelpers::CreatePatch(getDeformableDynamicsWorld()->getWorldInfo(), btVector3(-s, h, -s), btVector3(+s, h, -s), btVector3(-s, h, +s), btVector3(+s, h, +s), 20,20, // 3,3, 1 + 2 + 4 + 8, true); psb->getCollisionShape()->setMargin(0.025); psb->generateBendingConstraints(2); psb->setTotalMass(1); psb->m_cfg.kKHR = 1; // collision hardness with kinematic objects psb->m_cfg.kCHR = 1; // collision hardness with rigid body psb->m_cfg.kDF = 2; psb->m_cfg.collisions = btSoftBody::fCollision::SDF_RD; psb->m_cfg.collisions |= btSoftBody::fCollision::SDF_RDF; psb->m_cfg.collisions |= btSoftBody::fCollision::SDF_MDF; psb->setCollisionFlags(0); getDeformableDynamicsWorld()->addSoftBody(psb); btDeformableMassSpringForce* mass_spring = new btDeformableMassSpringForce(30, 1, true); getDeformableDynamicsWorld()->addForce(psb, mass_spring); m_forces.push_back(mass_spring); btDeformableGravityForce* gravity_force = new btDeformableGravityForce(gravity); getDeformableDynamicsWorld()->addForce(psb, gravity_force); m_forces.push_back(gravity_force); } getDeformableDynamicsWorld()->setImplicit(false); m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld); } void DeformableMultibody::exitPhysics() { //cleanup in the reverse order of creation/initialization removePickingConstraint(); //remove the rigidbodies from the dynamics world and delete them int i; for (i = m_dynamicsWorld->getNumCollisionObjects() - 1; i >= 0; i--) { btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i]; btRigidBody* body = btRigidBody::upcast(obj); if (body && body->getMotionState()) { delete body->getMotionState(); } m_dynamicsWorld->removeCollisionObject(obj); delete obj; } // delete forces for (int j = 0; j < m_forces.size(); j++) { btDeformableLagrangianForce* force = m_forces[j]; delete force; } m_forces.clear(); //delete collision shapes for (int j = 0; j < m_collisionShapes.size(); j++) { btCollisionShape* shape = m_collisionShapes[j]; delete shape; } m_collisionShapes.clear(); delete m_dynamicsWorld; delete m_solver; delete m_broadphase; delete m_dispatcher; delete m_collisionConfiguration; } void DeformableMultibody::stepSimulation(float deltaTime) { // getDeformableDynamicsWorld()->getMultiBodyDynamicsWorld()->stepSimulation(deltaTime); m_dynamicsWorld->stepSimulation(deltaTime, 5, 1./250.); } btMultiBody* DeformableMultibody::createFeatherstoneMultiBody_testMultiDof(btMultiBodyDynamicsWorld* pWorld, int numLinks, const btVector3& basePosition, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents, bool spherical, bool floating) { //init the base btVector3 baseInertiaDiag(0.f, 0.f, 0.f); float baseMass = .1f; if (baseMass) { btCollisionShape* pTempBox = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2])); pTempBox->calculateLocalInertia(baseMass, baseInertiaDiag); delete pTempBox; } bool canSleep = false; btMultiBody* pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep); btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f); pMultiBody->setBasePos(basePosition); pMultiBody->setWorldToBaseRot(baseOriQuat); btVector3 vel(0, 0, 0); // pMultiBody->setBaseVel(vel); //init the links btVector3 hingeJointAxis(1, 0, 0); float linkMass = .1f; btVector3 linkInertiaDiag(0.f, 0.f, 0.f); btCollisionShape* pTempBox = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2])); pTempBox->calculateLocalInertia(linkMass, linkInertiaDiag); delete pTempBox; //y-axis assumed up btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0); //par body's COM to cur body's COM offset btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0); //cur body's COM to cur body's PIV offset btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset ////// btScalar q0 = 0.f * SIMD_PI / 180.f; btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0); quat0.normalize(); ///// for (int i = 0; i < numLinks; ++i) { if (!spherical) pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, true); else //pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false); pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, true); } pMultiBody->finalizeMultiDof(); /// pWorld->addMultiBody(pMultiBody); /// return pMultiBody; } void DeformableMultibody::addColliders_testMultiDof(btMultiBody* pMultiBody, btMultiBodyDynamicsWorld* pWorld, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents) { btAlignedObjectArray world_to_local; world_to_local.resize(pMultiBody->getNumLinks() + 1); btAlignedObjectArray local_origin; local_origin.resize(pMultiBody->getNumLinks() + 1); world_to_local[0] = pMultiBody->getWorldToBaseRot(); local_origin[0] = pMultiBody->getBasePos(); { btScalar quat[4] = {-world_to_local[0].x(), -world_to_local[0].y(), -world_to_local[0].z(), world_to_local[0].w()}; btCollisionShape* box = new btBoxShape(baseHalfExtents); box->setMargin(0.01); btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, -1); col->setCollisionShape(box); btTransform tr; tr.setIdentity(); tr.setOrigin(local_origin[0]); tr.setRotation(btQuaternion(quat[0], quat[1], quat[2], quat[3])); col->setWorldTransform(tr); pWorld->addCollisionObject(col, 2, 1 + 2); col->setFriction(friction); pMultiBody->setBaseCollider(col); } for (int i = 0; i < pMultiBody->getNumLinks(); ++i) { const int parent = pMultiBody->getParent(i); world_to_local[i + 1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent + 1]; local_origin[i + 1] = local_origin[parent + 1] + (quatRotate(world_to_local[i + 1].inverse(), pMultiBody->getRVector(i))); } for (int i = 0; i < pMultiBody->getNumLinks(); ++i) { btVector3 posr = local_origin[i + 1]; btScalar quat[4] = {-world_to_local[i + 1].x(), -world_to_local[i + 1].y(), -world_to_local[i + 1].z(), world_to_local[i + 1].w()}; btCollisionShape* box = new btBoxShape(linkHalfExtents); btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i); col->setCollisionShape(box); btTransform tr; tr.setIdentity(); tr.setOrigin(posr); tr.setRotation(btQuaternion(quat[0], quat[1], quat[2], quat[3])); col->setWorldTransform(tr); col->setFriction(friction); pWorld->addCollisionObject(col, 2, 1 + 2); pMultiBody->getLink(i).m_collider = col; } } class CommonExampleInterface* DeformableMultibodyCreateFunc(struct CommonExampleOptions& options) { return new DeformableMultibody(options.m_guiHelper); }