#include "OpenGLGuiHelper.h" #include "btBulletDynamicsCommon.h" #include "BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h" #include "../CommonInterfaces/CommonGraphicsAppInterface.h" #include "../CommonInterfaces/CommonRenderInterface.h" #include "Bullet3Common/b3Scalar.h" #include "CollisionShape2TriangleMesh.h" #include "BulletSoftBody/btSoftBodyHelpers.h" #include "../OpenGLWindow/ShapeData.h" #include "../OpenGLWindow/SimpleCamera.h" #define BT_LINE_BATCH_SIZE 512 struct MyDebugVec3 { MyDebugVec3(const btVector3& org) : x(org.x()), y(org.y()), z(org.z()) { } float x; float y; float z; }; ATTRIBUTE_ALIGNED16(class) MyDebugDrawer : public btIDebugDraw { CommonGraphicsApp* m_glApp; int m_debugMode; btAlignedObjectArray m_linePoints; btAlignedObjectArray m_lineIndices; btVector3 m_currentLineColor; DefaultColors m_ourColors; public: BT_DECLARE_ALIGNED_ALLOCATOR(); MyDebugDrawer(CommonGraphicsApp * app) : m_glApp(app), m_debugMode(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawAabb), m_currentLineColor(-1, -1, -1) { } virtual ~MyDebugDrawer() { } virtual DefaultColors getDefaultColors() const { return m_ourColors; } ///the default implementation for setDefaultColors has no effect. A derived class can implement it and store the colors. virtual void setDefaultColors(const DefaultColors& colors) { m_ourColors = colors; } virtual void drawLine(const btVector3& from1, const btVector3& to1, const btVector3& color1) { //float from[4] = {from1[0],from1[1],from1[2],from1[3]}; //float to[4] = {to1[0],to1[1],to1[2],to1[3]}; //float color[4] = {color1[0],color1[1],color1[2],color1[3]}; //m_glApp->m_instancingRenderer->drawLine(from,to,color); if (m_currentLineColor != color1 || m_linePoints.size() >= BT_LINE_BATCH_SIZE) { flushLines(); m_currentLineColor = color1; } MyDebugVec3 from(from1); MyDebugVec3 to(to1); m_linePoints.push_back(from); m_linePoints.push_back(to); m_lineIndices.push_back(m_lineIndices.size()); m_lineIndices.push_back(m_lineIndices.size()); } virtual void drawContactPoint(const btVector3& PointOnB, const btVector3& normalOnB, btScalar distance, int lifeTime, const btVector3& color) { drawLine(PointOnB, PointOnB + normalOnB * distance, color); btVector3 ncolor(0, 0, 0); drawLine(PointOnB, PointOnB + normalOnB * 0.01, ncolor); } virtual void reportErrorWarning(const char* warningString) { } virtual void draw3dText(const btVector3& location, const char* textString) { } virtual void setDebugMode(int debugMode) { m_debugMode = debugMode; } virtual int getDebugMode() const { return m_debugMode; } virtual void flushLines() { int sz = m_linePoints.size(); if (sz) { float debugColor[4]; debugColor[0] = m_currentLineColor.x(); debugColor[1] = m_currentLineColor.y(); debugColor[2] = m_currentLineColor.z(); debugColor[3] = 1.f; m_glApp->m_renderer->drawLines(&m_linePoints[0].x, debugColor, m_linePoints.size(), sizeof(MyDebugVec3), &m_lineIndices[0], m_lineIndices.size(), 1); m_linePoints.clear(); m_lineIndices.clear(); } } }; static btVector4 sColors[4] = { btVector4(60. / 256., 186. / 256., 84. / 256., 1), btVector4(244. / 256., 194. / 256., 13. / 256., 1), btVector4(219. / 256., 50. / 256., 54. / 256., 1), btVector4(72. / 256., 133. / 256., 237. / 256., 1), //btVector4(1,1,0,1), }; struct MyHashShape { int m_shapeKey; int m_shapeType; btVector3 m_sphere0Pos; btVector3 m_sphere1Pos; btVector3 m_halfExtents; btScalar m_radius0; btScalar m_radius1; btTransform m_childTransform; int m_deformFunc; int m_upAxis; btScalar m_halfHeight; MyHashShape() : m_shapeKey(0), m_shapeType(0), m_sphere0Pos(btVector3(0, 0, 0)), m_sphere1Pos(btVector3(0, 0, 0)), m_halfExtents(btVector3(0, 0, 0)), m_radius0(0), m_radius1(0), m_deformFunc(0), m_upAxis(-1), m_halfHeight(0) { m_childTransform.setIdentity(); } bool equals(const MyHashShape& other) const { bool sameShapeType = m_shapeType == other.m_shapeType; bool sameSphere0 = m_sphere0Pos == other.m_sphere0Pos; bool sameSphere1 = m_sphere1Pos == other.m_sphere1Pos; bool sameHalfExtents = m_halfExtents == other.m_halfExtents; bool sameRadius0 = m_radius0 == other.m_radius0; bool sameRadius1 = m_radius1 == other.m_radius1; bool sameTransform = m_childTransform == other.m_childTransform; bool sameUpAxis = m_upAxis == other.m_upAxis; bool sameHalfHeight = m_halfHeight == other.m_halfHeight; return sameShapeType && sameSphere0 && sameSphere1 && sameHalfExtents && sameRadius0 && sameRadius1 && sameTransform && sameUpAxis && sameHalfHeight; } //to our success SIMD_FORCE_INLINE unsigned int getHash() const { unsigned int key = m_shapeKey; // Thomas Wang's hash key += ~(key << 15); key ^= (key >> 10); key += (key << 3); key ^= (key >> 6); key += ~(key << 11); key ^= (key >> 16); return key; } }; struct OpenGLGuiHelperInternalData { struct CommonGraphicsApp* m_glApp; class MyDebugDrawer* m_debugDraw; bool m_vrMode; int m_vrSkipShadowPass; btAlignedObjectArray m_rgbaPixelBuffer1; btAlignedObjectArray m_depthBuffer1; btAlignedObjectArray m_segmentationMaskBuffer; btHashMap m_hashShapes; VisualizerFlagCallback m_visualizerFlagCallback; int m_checkedTexture; int m_checkedTextureGrey; OpenGLGuiHelperInternalData() : m_vrMode(false), m_vrSkipShadowPass(0), m_visualizerFlagCallback(0), m_checkedTexture(-1), m_checkedTextureGrey(-1) { } }; void OpenGLGuiHelper::setVRMode(bool vrMode) { m_data->m_vrMode = vrMode; m_data->m_vrSkipShadowPass = 0; } OpenGLGuiHelper::OpenGLGuiHelper(CommonGraphicsApp* glApp, bool useOpenGL2) { m_data = new OpenGLGuiHelperInternalData; m_data->m_glApp = glApp; m_data->m_debugDraw = 0; } OpenGLGuiHelper::~OpenGLGuiHelper() { delete m_data->m_debugDraw; delete m_data; } struct CommonRenderInterface* OpenGLGuiHelper::getRenderInterface() { return m_data->m_glApp->m_renderer; } const struct CommonRenderInterface* OpenGLGuiHelper::getRenderInterface() const { return m_data->m_glApp->m_renderer; } void OpenGLGuiHelper::createRigidBodyGraphicsObject(btRigidBody* body, const btVector3& color) { createCollisionObjectGraphicsObject(body, color); } class MyTriangleCollector2 : public btTriangleCallback { public: btAlignedObjectArray* m_pVerticesOut; btAlignedObjectArray* m_pIndicesOut; btVector3 m_aabbMin, m_aabbMax; btScalar m_textureScaling; MyTriangleCollector2(const btVector3& aabbMin, const btVector3& aabbMax) :m_aabbMin(aabbMin), m_aabbMax(aabbMax), m_textureScaling(1) { m_pVerticesOut = 0; m_pIndicesOut = 0; } virtual void processTriangle(btVector3* tris, int partId, int triangleIndex) { for (int k = 0; k < 3; k++) { GLInstanceVertex v; v.xyzw[3] = 0; btVector3 normal = (tris[0] - tris[1]).cross(tris[0] - tris[2]); normal.safeNormalize(); for (int l = 0; l < 3; l++) { v.xyzw[l] = tris[k][l]; v.normal[l] = normal[l]; } btVector3 extents = m_aabbMax - m_aabbMin; v.uv[0] = (1.-((v.xyzw[0] - m_aabbMin[0]) / (m_aabbMax[0] - m_aabbMin[0])))*m_textureScaling; v.uv[1] = (1.-(v.xyzw[1] - m_aabbMin[1]) / (m_aabbMax[1] - m_aabbMin[1]))*m_textureScaling; m_pIndicesOut->push_back(m_pVerticesOut->size()); m_pVerticesOut->push_back(v); } } }; void OpenGLGuiHelper::createCollisionObjectGraphicsObject(btCollisionObject* body, const btVector3& color) { if (body->getUserIndex() < 0) { btCollisionShape* shape = body->getCollisionShape(); btTransform startTransform = body->getWorldTransform(); int graphicsShapeId = shape->getUserIndex(); if (graphicsShapeId >= 0) { // btAssert(graphicsShapeId >= 0); //the graphics shape is already scaled btVector3 localScaling(1, 1, 1); int graphicsInstanceId = m_data->m_glApp->m_renderer->registerGraphicsInstance(graphicsShapeId, startTransform.getOrigin(), startTransform.getRotation(), color, localScaling); body->setUserIndex(graphicsInstanceId); btSoftBody* sb = btSoftBody::upcast(body); if (sb) { int graphicsInstanceId = body->getUserIndex(); changeInstanceFlags(graphicsInstanceId, B3_INSTANCE_DOUBLE_SIDED); } } } } int OpenGLGuiHelper::registerTexture(const unsigned char* texels, int width, int height) { int textureId = m_data->m_glApp->m_renderer->registerTexture(texels, width, height); return textureId; } void OpenGLGuiHelper::removeTexture(int textureUid) { m_data->m_glApp->m_renderer->removeTexture(textureUid); } void OpenGLGuiHelper::changeTexture(int textureUniqueId, const unsigned char* rgbTexels, int width, int height) { bool flipPixelsY = true; m_data->m_glApp->m_renderer->updateTexture(textureUniqueId, rgbTexels, flipPixelsY); } int OpenGLGuiHelper::registerGraphicsShape(const float* vertices, int numvertices, const int* indices, int numIndices, int primitiveType, int textureId) { if (textureId == -2) { if (m_data->m_checkedTextureGrey < 0) { m_data->m_checkedTextureGrey = createCheckeredTexture(192, 192, 192); } textureId = m_data->m_checkedTextureGrey; } int shapeId = m_data->m_glApp->m_renderer->registerShape(vertices, numvertices, indices, numIndices, primitiveType, textureId); return shapeId; } int OpenGLGuiHelper::registerGraphicsInstance(int shapeIndex, const float* position, const float* quaternion, const float* color, const float* scaling) { return m_data->m_glApp->m_renderer->registerGraphicsInstance(shapeIndex, position, quaternion, color, scaling); } void OpenGLGuiHelper::removeAllGraphicsInstances() { m_data->m_hashShapes.clear(); m_data->m_glApp->m_renderer->removeAllInstances(); } void OpenGLGuiHelper::removeGraphicsInstance(int graphicsUid) { if (graphicsUid >= 0) { m_data->m_glApp->m_renderer->removeGraphicsInstance(graphicsUid); }; } int OpenGLGuiHelper::getShapeIndexFromInstance(int instanceUid) { return m_data->m_glApp->m_renderer->getShapeIndexFromInstance(instanceUid); } void OpenGLGuiHelper::replaceTexture(int shapeIndex, int textureUid) { if (shapeIndex >= 0) { m_data->m_glApp->m_renderer->replaceTexture(shapeIndex, textureUid); }; } void OpenGLGuiHelper::changeInstanceFlags(int instanceUid, int flags) { if (instanceUid >= 0) { //careful, flags/instanceUid is swapped m_data->m_glApp->m_renderer->writeSingleInstanceFlagsToCPU( flags, instanceUid); } } void OpenGLGuiHelper::changeScaling(int instanceUid, const double scaling[3]) { if (instanceUid >= 0) { m_data->m_glApp->m_renderer->writeSingleInstanceScaleToCPU(scaling, instanceUid); }; } void OpenGLGuiHelper::changeRGBAColor(int instanceUid, const double rgbaColor[4]) { if (instanceUid >= 0) { m_data->m_glApp->m_renderer->writeSingleInstanceColorToCPU(rgbaColor, instanceUid); }; } void OpenGLGuiHelper::changeSpecularColor(int instanceUid, const double specularColor[3]) { if (instanceUid >= 0) { m_data->m_glApp->m_renderer->writeSingleInstanceSpecularColorToCPU(specularColor, instanceUid); }; } int OpenGLGuiHelper::createCheckeredTexture(int red, int green, int blue) { int texWidth = 1024; int texHeight = 1024; btAlignedObjectArray texels; texels.resize(texWidth * texHeight * 3); for (int i = 0; i < texWidth * texHeight * 3; i++) texels[i] = 255; for (int i = 0; i < texWidth; i++) { for (int j = 0; j < texHeight; j++) { int a = i < texWidth / 2 ? 1 : 0; int b = j < texWidth / 2 ? 1 : 0; if (a == b) { texels[(i + j * texWidth) * 3 + 0] = red; texels[(i + j * texWidth) * 3 + 1] = green; texels[(i + j * texWidth) * 3 + 2] = blue; // texels[(i+j*texWidth)*4+3] = 255; } /*else { texels[i*3+0+j*texWidth] = 255; texels[i*3+1+j*texWidth] = 255; texels[i*3+2+j*texWidth] = 255; } */ } } int texId = registerTexture(&texels[0], texWidth, texHeight); return texId; } void OpenGLGuiHelper::createCollisionShapeGraphicsObject(btCollisionShape* collisionShape) { //already has a graphics object? if (collisionShape->getUserIndex() >= 0) return; if (m_data->m_checkedTexture < 0) { m_data->m_checkedTexture = createCheckeredTexture(173, 199, 255); } if (m_data->m_checkedTextureGrey < 0) { m_data->m_checkedTextureGrey = createCheckeredTexture(192, 192, 192); } btAlignedObjectArray gfxVertices; btAlignedObjectArray indices; int strideInBytes = 9 * sizeof(float); if (collisionShape->getShapeType() == BOX_SHAPE_PROXYTYPE) { btBoxShape* boxShape = (btBoxShape*)collisionShape; btAlignedObjectArray transformedVertices; btVector3 halfExtents = boxShape->getHalfExtentsWithMargin(); MyHashShape shape; shape.m_shapeType = boxShape->getShapeType(); shape.m_halfExtents = halfExtents; shape.m_deformFunc = 0; ////no deform int graphicsShapeIndex = -1; int* graphicsShapeIndexPtr = m_data->m_hashShapes[shape]; if (graphicsShapeIndexPtr) { graphicsShapeIndex = *graphicsShapeIndexPtr; } else { int numVertices = sizeof(cube_vertices_textured) / strideInBytes; transformedVertices.resize(numVertices * 9); for (int i = 0; i < numVertices; i++) { btVector3 vert; vert.setValue(cube_vertices_textured[i * 9 + 0], cube_vertices_textured[i * 9 + 1], cube_vertices_textured[i * 9 + 2]); btVector3 trVer = halfExtents * vert; transformedVertices[i * 9 + 0] = trVer[0]; transformedVertices[i * 9 + 1] = trVer[1]; transformedVertices[i * 9 + 2] = trVer[2]; transformedVertices[i * 9 + 3] = cube_vertices_textured[i * 9 + 3]; transformedVertices[i * 9 + 4] = cube_vertices_textured[i * 9 + 4]; transformedVertices[i * 9 + 5] = cube_vertices_textured[i * 9 + 5]; transformedVertices[i * 9 + 6] = cube_vertices_textured[i * 9 + 6]; transformedVertices[i * 9 + 7] = cube_vertices_textured[i * 9 + 7]; transformedVertices[i * 9 + 8] = cube_vertices_textured[i * 9 + 8]; } int numIndices = sizeof(cube_indices) / sizeof(int); graphicsShapeIndex = registerGraphicsShape(&transformedVertices[0], numVertices, cube_indices, numIndices, B3_GL_TRIANGLES, m_data->m_checkedTextureGrey); m_data->m_hashShapes.insert(shape, graphicsShapeIndex); } collisionShape->setUserIndex(graphicsShapeIndex); return; } if (collisionShape->getShapeType() == TERRAIN_SHAPE_PROXYTYPE) { const btHeightfieldTerrainShape* heightField = static_cast(collisionShape); btVector3 aabbMin, aabbMax; btTransform tr; tr.setIdentity(); heightField->getAabb(tr, aabbMin, aabbMax); MyTriangleCollector2 col(aabbMin, aabbMax); if (heightField->getUserValue3()) { col.m_textureScaling = heightField->getUserValue3(); } col.m_pVerticesOut = &gfxVertices; col.m_pIndicesOut = &indices; for (int k = 0; k < 3; k++) { aabbMin[k] = -BT_LARGE_FLOAT; aabbMax[k] = BT_LARGE_FLOAT; } heightField->processAllTriangles(&col, aabbMin, aabbMax); if (gfxVertices.size() && indices.size()) { int userImage = heightField->getUserIndex2(); if (userImage == -1) { userImage = m_data->m_checkedTexture; } int shapeId = m_data->m_glApp->m_renderer->registerShape(&gfxVertices[0].xyzw[0], gfxVertices.size(), &indices[0], indices.size(),1, userImage); collisionShape->setUserIndex(shapeId); } return; } if (collisionShape->getShapeType() == SOFTBODY_SHAPE_PROXYTYPE) { computeSoftBodyVertices(collisionShape, gfxVertices, indices); if (gfxVertices.size() && indices.size()) { int shapeId = registerGraphicsShape(&gfxVertices[0].xyzw[0], gfxVertices.size(), &indices[0], indices.size(), B3_GL_TRIANGLES,m_data->m_checkedTexture); b3Assert(shapeId >= 0); collisionShape->setUserIndex(shapeId); } } if (collisionShape->getShapeType() == MULTI_SPHERE_SHAPE_PROXYTYPE) { btMultiSphereShape* ms = (btMultiSphereShape*)collisionShape; if (ms->getSphereCount() == 2) { btAlignedObjectArray transformedVertices; int numVertices = sizeof(textured_detailed_sphere_vertices) / strideInBytes; transformedVertices.resize(numVertices * 9); btVector3 sphere0Pos = ms->getSpherePosition(0); btVector3 sphere1Pos = ms->getSpherePosition(1); btVector3 fromTo = sphere1Pos - sphere0Pos; MyHashShape shape; shape.m_sphere0Pos = sphere0Pos; shape.m_sphere1Pos = sphere1Pos; shape.m_radius0 = 2. * ms->getSphereRadius(0); shape.m_radius1 = 2. * ms->getSphereRadius(1); shape.m_deformFunc = 1; //vert.dot(fromTo) int graphicsShapeIndex = -1; int* graphicsShapeIndexPtr = m_data->m_hashShapes[shape]; if (graphicsShapeIndexPtr) { //cache hit graphicsShapeIndex = *graphicsShapeIndexPtr; } else { //cache miss for (int i = 0; i < numVertices; i++) { btVector3 vert; vert.setValue(textured_detailed_sphere_vertices[i * 9 + 0], textured_detailed_sphere_vertices[i * 9 + 1], textured_detailed_sphere_vertices[i * 9 + 2]); btVector3 trVer(0, 0, 0); if (vert.dot(fromTo) > 0) { btScalar radiusScale = 2. * ms->getSphereRadius(1); trVer = radiusScale * vert; trVer += sphere1Pos; } else { btScalar radiusScale = 2. * ms->getSphereRadius(0); trVer = radiusScale * vert; trVer += sphere0Pos; } transformedVertices[i * 9 + 0] = trVer[0]; transformedVertices[i * 9 + 1] = trVer[1]; transformedVertices[i * 9 + 2] = trVer[2]; transformedVertices[i * 9 + 3] = textured_detailed_sphere_vertices[i * 9 + 3]; transformedVertices[i * 9 + 4] = textured_detailed_sphere_vertices[i * 9 + 4]; transformedVertices[i * 9 + 5] = textured_detailed_sphere_vertices[i * 9 + 5]; transformedVertices[i * 9 + 6] = textured_detailed_sphere_vertices[i * 9 + 6]; transformedVertices[i * 9 + 7] = textured_detailed_sphere_vertices[i * 9 + 7]; transformedVertices[i * 9 + 8] = textured_detailed_sphere_vertices[i * 9 + 8]; } int numIndices = sizeof(textured_detailed_sphere_indices) / sizeof(int); graphicsShapeIndex = registerGraphicsShape(&transformedVertices[0], numVertices, textured_detailed_sphere_indices, numIndices, B3_GL_TRIANGLES, m_data->m_checkedTextureGrey); m_data->m_hashShapes.insert(shape, graphicsShapeIndex); } collisionShape->setUserIndex(graphicsShapeIndex); return; } } if (collisionShape->getShapeType() == SPHERE_SHAPE_PROXYTYPE) { btSphereShape* sphereShape = (btSphereShape*)collisionShape; btScalar radius = sphereShape->getRadius(); btScalar sphereSize = 2. * radius; btVector3 radiusScale(sphereSize, sphereSize, sphereSize); btAlignedObjectArray transformedVertices; MyHashShape shape; shape.m_radius0 = sphereSize; shape.m_deformFunc = 0; ////no deform int graphicsShapeIndex = -1; int* graphicsShapeIndexPtr = m_data->m_hashShapes[shape]; if (graphicsShapeIndexPtr) { graphicsShapeIndex = *graphicsShapeIndexPtr; } else { int numVertices = sizeof(textured_detailed_sphere_vertices) / strideInBytes; transformedVertices.resize(numVertices * 9); for (int i = 0; i < numVertices; i++) { btVector3 vert; vert.setValue(textured_detailed_sphere_vertices[i * 9 + 0], textured_detailed_sphere_vertices[i * 9 + 1], textured_detailed_sphere_vertices[i * 9 + 2]); btVector3 trVer = radiusScale * vert; transformedVertices[i * 9 + 0] = trVer[0]; transformedVertices[i * 9 + 1] = trVer[1]; transformedVertices[i * 9 + 2] = trVer[2]; transformedVertices[i * 9 + 3] = textured_detailed_sphere_vertices[i * 9 + 3]; transformedVertices[i * 9 + 4] = textured_detailed_sphere_vertices[i * 9 + 4]; transformedVertices[i * 9 + 5] = textured_detailed_sphere_vertices[i * 9 + 5]; transformedVertices[i * 9 + 6] = textured_detailed_sphere_vertices[i * 9 + 6]; transformedVertices[i * 9 + 7] = textured_detailed_sphere_vertices[i * 9 + 7]; transformedVertices[i * 9 + 8] = textured_detailed_sphere_vertices[i * 9 + 8]; } int numIndices = sizeof(textured_detailed_sphere_indices) / sizeof(int); graphicsShapeIndex = registerGraphicsShape(&transformedVertices[0], numVertices, textured_detailed_sphere_indices, numIndices, B3_GL_TRIANGLES, m_data->m_checkedTextureGrey); m_data->m_hashShapes.insert(shape, graphicsShapeIndex); } collisionShape->setUserIndex(graphicsShapeIndex); return; } if (collisionShape->getShapeType() == COMPOUND_SHAPE_PROXYTYPE) { btCompoundShape* compound = (btCompoundShape*)collisionShape; if (compound->getNumChildShapes() == 1) { if (compound->getChildShape(0)->getShapeType() == SPHERE_SHAPE_PROXYTYPE) { btSphereShape* sphereShape = (btSphereShape*)compound->getChildShape(0); btScalar radius = sphereShape->getRadius(); btScalar sphereSize = 2. * radius; btVector3 radiusScale(sphereSize, sphereSize, sphereSize); MyHashShape shape; shape.m_radius0 = sphereSize; shape.m_deformFunc = 0; //no deform shape.m_childTransform = compound->getChildTransform(0); int graphicsShapeIndex = -1; int* graphicsShapeIndexPtr = m_data->m_hashShapes[shape]; if (graphicsShapeIndexPtr) { graphicsShapeIndex = *graphicsShapeIndexPtr; } else { btAlignedObjectArray transformedVertices; int numVertices = sizeof(textured_detailed_sphere_vertices) / strideInBytes; transformedVertices.resize(numVertices * 9); for (int i = 0; i < numVertices; i++) { btVector3 vert; vert.setValue(textured_detailed_sphere_vertices[i * 9 + 0], textured_detailed_sphere_vertices[i * 9 + 1], textured_detailed_sphere_vertices[i * 9 + 2]); btVector3 trVer = compound->getChildTransform(0) * (radiusScale * vert); transformedVertices[i * 9 + 0] = trVer[0]; transformedVertices[i * 9 + 1] = trVer[1]; transformedVertices[i * 9 + 2] = trVer[2]; transformedVertices[i * 9 + 3] = textured_detailed_sphere_vertices[i * 9 + 3]; transformedVertices[i * 9 + 4] = textured_detailed_sphere_vertices[i * 9 + 4]; transformedVertices[i * 9 + 5] = textured_detailed_sphere_vertices[i * 9 + 5]; transformedVertices[i * 9 + 6] = textured_detailed_sphere_vertices[i * 9 + 6]; transformedVertices[i * 9 + 7] = textured_detailed_sphere_vertices[i * 9 + 7]; transformedVertices[i * 9 + 8] = textured_detailed_sphere_vertices[i * 9 + 8]; } int numIndices = sizeof(textured_detailed_sphere_indices) / sizeof(int); graphicsShapeIndex = registerGraphicsShape(&transformedVertices[0], numVertices, textured_detailed_sphere_indices, numIndices, B3_GL_TRIANGLES, m_data->m_checkedTextureGrey); m_data->m_hashShapes.insert(shape, graphicsShapeIndex); } collisionShape->setUserIndex(graphicsShapeIndex); return; } if (compound->getChildShape(0)->getShapeType() == CAPSULE_SHAPE_PROXYTYPE) { btCapsuleShape* sphereShape = (btCapsuleShape*)compound->getChildShape(0); int up = sphereShape->getUpAxis(); btScalar halfHeight = sphereShape->getHalfHeight(); btScalar radius = sphereShape->getRadius(); btScalar sphereSize = 2. * radius; btVector3 radiusScale = btVector3(sphereSize, sphereSize, sphereSize); MyHashShape shape; shape.m_radius0 = sphereSize; shape.m_deformFunc = 2; //no deform shape.m_childTransform = compound->getChildTransform(0); shape.m_upAxis = up; int graphicsShapeIndex = -1; int* graphicsShapeIndexPtr = m_data->m_hashShapes[shape]; if (graphicsShapeIndexPtr) { graphicsShapeIndex = *graphicsShapeIndexPtr; } else { btAlignedObjectArray transformedVertices; int numVertices = sizeof(textured_detailed_sphere_vertices) / strideInBytes; transformedVertices.resize(numVertices * 9); for (int i = 0; i < numVertices; i++) { btVector3 vert; vert.setValue(textured_detailed_sphere_vertices[i * 9 + 0], textured_detailed_sphere_vertices[i * 9 + 1], textured_detailed_sphere_vertices[i * 9 + 2]); btVector3 trVer = (radiusScale * vert); if (trVer[up] > 0) trVer[up] += halfHeight; else trVer[up] -= halfHeight; trVer = compound->getChildTransform(0) * trVer; transformedVertices[i * 9 + 0] = trVer[0]; transformedVertices[i * 9 + 1] = trVer[1]; transformedVertices[i * 9 + 2] = trVer[2]; transformedVertices[i * 9 + 3] = textured_detailed_sphere_vertices[i * 9 + 3]; transformedVertices[i * 9 + 4] = textured_detailed_sphere_vertices[i * 9 + 4]; transformedVertices[i * 9 + 5] = textured_detailed_sphere_vertices[i * 9 + 5]; transformedVertices[i * 9 + 6] = textured_detailed_sphere_vertices[i * 9 + 6]; transformedVertices[i * 9 + 7] = textured_detailed_sphere_vertices[i * 9 + 7]; transformedVertices[i * 9 + 8] = textured_detailed_sphere_vertices[i * 9 + 8]; } int numIndices = sizeof(textured_detailed_sphere_indices) / sizeof(int); graphicsShapeIndex = registerGraphicsShape(&transformedVertices[0], numVertices, textured_detailed_sphere_indices, numIndices, B3_GL_TRIANGLES, m_data->m_checkedTextureGrey); m_data->m_hashShapes.insert(shape, graphicsShapeIndex); } collisionShape->setUserIndex(graphicsShapeIndex); return; } if (compound->getChildShape(0)->getShapeType() == MULTI_SPHERE_SHAPE_PROXYTYPE) { btMultiSphereShape* ms = (btMultiSphereShape*)compound->getChildShape(0); if (ms->getSphereCount() == 2) { btAlignedObjectArray transformedVertices; int numVertices = sizeof(textured_detailed_sphere_vertices) / strideInBytes; transformedVertices.resize(numVertices * 9); btVector3 sphere0Pos = ms->getSpherePosition(0); btVector3 sphere1Pos = ms->getSpherePosition(1); btVector3 fromTo = sphere1Pos - sphere0Pos; btScalar radiusScale1 = 2.0 * ms->getSphereRadius(1); btScalar radiusScale0 = 2.0 * ms->getSphereRadius(0); MyHashShape shape; shape.m_radius0 = radiusScale0; shape.m_radius1 = radiusScale1; shape.m_deformFunc = 4; shape.m_sphere0Pos = sphere0Pos; shape.m_sphere1Pos = sphere1Pos; shape.m_childTransform = compound->getChildTransform(0); int graphicsShapeIndex = -1; int* graphicsShapeIndexPtr = m_data->m_hashShapes[shape]; if (graphicsShapeIndexPtr) { graphicsShapeIndex = *graphicsShapeIndexPtr; } else { for (int i = 0; i < numVertices; i++) { btVector3 vert; vert.setValue(textured_detailed_sphere_vertices[i * 9 + 0], textured_detailed_sphere_vertices[i * 9 + 1], textured_detailed_sphere_vertices[i * 9 + 2]); btVector3 trVer(0, 0, 0); if (vert.dot(fromTo) > 0) { trVer = vert * radiusScale1; trVer += sphere1Pos; trVer = compound->getChildTransform(0) * trVer; } else { trVer = vert * radiusScale0; trVer += sphere0Pos; trVer = compound->getChildTransform(0) * trVer; } transformedVertices[i * 9 + 0] = trVer[0]; transformedVertices[i * 9 + 1] = trVer[1]; transformedVertices[i * 9 + 2] = trVer[2]; transformedVertices[i * 9 + 3] = textured_detailed_sphere_vertices[i * 9 + 3]; transformedVertices[i * 9 + 4] = textured_detailed_sphere_vertices[i * 9 + 4]; transformedVertices[i * 9 + 5] = textured_detailed_sphere_vertices[i * 9 + 5]; transformedVertices[i * 9 + 6] = textured_detailed_sphere_vertices[i * 9 + 6]; transformedVertices[i * 9 + 7] = textured_detailed_sphere_vertices[i * 9 + 7]; transformedVertices[i * 9 + 8] = textured_detailed_sphere_vertices[i * 9 + 8]; } int numIndices = sizeof(textured_detailed_sphere_indices) / sizeof(int); graphicsShapeIndex = registerGraphicsShape(&transformedVertices[0], numVertices, textured_detailed_sphere_indices, numIndices, B3_GL_TRIANGLES, m_data->m_checkedTextureGrey); m_data->m_hashShapes.insert(shape, graphicsShapeIndex); } collisionShape->setUserIndex(graphicsShapeIndex); return; } } } } if (collisionShape->getShapeType() == CAPSULE_SHAPE_PROXYTYPE) { btCapsuleShape* sphereShape = (btCapsuleShape*)collisionShape; //Y up int up = sphereShape->getUpAxis(); btScalar halfHeight = sphereShape->getHalfHeight(); btScalar radius = sphereShape->getRadius(); btScalar sphereSize = 2. * radius; btVector3 radiusScale(sphereSize, sphereSize, sphereSize); MyHashShape shape; shape.m_radius0 = sphereSize; shape.m_deformFunc = 3; shape.m_upAxis = up; shape.m_halfHeight = halfHeight; int graphicsShapeIndex = -1; int* graphicsShapeIndexPtr = m_data->m_hashShapes[shape]; if (graphicsShapeIndexPtr) { graphicsShapeIndex = *graphicsShapeIndexPtr; } else { btAlignedObjectArray transformedVertices; int numVertices = sizeof(textured_detailed_sphere_vertices) / strideInBytes; transformedVertices.resize(numVertices * 9); for (int i = 0; i < numVertices; i++) { btVector3 vert; vert.setValue(textured_detailed_sphere_vertices[i * 9 + 0], textured_detailed_sphere_vertices[i * 9 + 1], textured_detailed_sphere_vertices[i * 9 + 2]); btVector3 trVer = radiusScale * vert; if (trVer[up] > 0) trVer[up] += halfHeight; else trVer[up] -= halfHeight; transformedVertices[i * 9 + 0] = trVer[0]; transformedVertices[i * 9 + 1] = trVer[1]; transformedVertices[i * 9 + 2] = trVer[2]; transformedVertices[i * 9 + 3] = textured_detailed_sphere_vertices[i * 9 + 3]; transformedVertices[i * 9 + 4] = textured_detailed_sphere_vertices[i * 9 + 4]; transformedVertices[i * 9 + 5] = textured_detailed_sphere_vertices[i * 9 + 5]; transformedVertices[i * 9 + 6] = textured_detailed_sphere_vertices[i * 9 + 6]; transformedVertices[i * 9 + 7] = textured_detailed_sphere_vertices[i * 9 + 7]; transformedVertices[i * 9 + 8] = textured_detailed_sphere_vertices[i * 9 + 8]; } int numIndices = sizeof(textured_detailed_sphere_indices) / sizeof(int); graphicsShapeIndex = registerGraphicsShape(&transformedVertices[0], numVertices, textured_detailed_sphere_indices, numIndices, B3_GL_TRIANGLES, m_data->m_checkedTextureGrey); m_data->m_hashShapes.insert(shape, graphicsShapeIndex); } collisionShape->setUserIndex(graphicsShapeIndex); return; } if (collisionShape->getShapeType() == STATIC_PLANE_PROXYTYPE) { const btStaticPlaneShape* staticPlaneShape = static_cast(collisionShape); btScalar planeConst = staticPlaneShape->getPlaneConstant(); const btVector3& planeNormal = staticPlaneShape->getPlaneNormal(); btVector3 planeOrigin = planeNormal * planeConst; btVector3 vec0, vec1; btPlaneSpace1(planeNormal, vec0, vec1); btScalar vecLen = 128; btVector3 verts[4]; verts[0] = planeOrigin + vec0 * vecLen + vec1 * vecLen; verts[1] = planeOrigin - vec0 * vecLen + vec1 * vecLen; verts[2] = planeOrigin - vec0 * vecLen - vec1 * vecLen; verts[3] = planeOrigin + vec0 * vecLen - vec1 * vecLen; int startIndex = 0; indices.push_back(startIndex + 0); indices.push_back(startIndex + 1); indices.push_back(startIndex + 2); indices.push_back(startIndex + 0); indices.push_back(startIndex + 2); indices.push_back(startIndex + 3); btTransform parentTransform; parentTransform.setIdentity(); btVector3 triNormal = parentTransform.getBasis() * planeNormal; gfxVertices.resize(4); for (int i = 0; i < 4; i++) { btVector3 vtxPos; btVector3 pos = parentTransform * verts[i]; gfxVertices[i].xyzw[0] = pos[0]; gfxVertices[i].xyzw[1] = pos[1]; gfxVertices[i].xyzw[2] = pos[2]; gfxVertices[i].xyzw[3] = 1; gfxVertices[i].normal[0] = triNormal[0]; gfxVertices[i].normal[1] = triNormal[1]; gfxVertices[i].normal[2] = triNormal[2]; } //verts[0] = planeOrigin + vec0*vecLen + vec1*vecLen; //verts[1] = planeOrigin - vec0*vecLen + vec1*vecLen; //verts[2] = planeOrigin - vec0*vecLen - vec1*vecLen; //verts[3] = planeOrigin + vec0*vecLen - vec1*vecLen; gfxVertices[0].uv[0] = vecLen / 2; gfxVertices[0].uv[1] = vecLen / 2; gfxVertices[1].uv[0] = -vecLen / 2; gfxVertices[1].uv[1] = vecLen / 2; gfxVertices[2].uv[0] = -vecLen / 2; gfxVertices[2].uv[1] = -vecLen / 2; gfxVertices[3].uv[0] = vecLen / 2; gfxVertices[3].uv[1] = -vecLen / 2; int shapeId = registerGraphicsShape(&gfxVertices[0].xyzw[0], gfxVertices.size(), &indices[0], indices.size(), B3_GL_TRIANGLES, m_data->m_checkedTexture); collisionShape->setUserIndex(shapeId); return; } btTransform startTrans; startTrans.setIdentity(); //todo: create some textured objects for popular objects, like plane, cube, sphere, capsule { btAlignedObjectArray vertexPositions; btAlignedObjectArray vertexNormals; CollisionShape2TriangleMesh(collisionShape, startTrans, vertexPositions, vertexNormals, indices); gfxVertices.resize(vertexPositions.size()); for (int i = 0; i < vertexPositions.size(); i++) { for (int j = 0; j < 4; j++) { gfxVertices[i].xyzw[j] = vertexPositions[i][j]; } for (int j = 0; j < 3; j++) { gfxVertices[i].normal[j] = vertexNormals[i][j]; } for (int j = 0; j < 2; j++) { gfxVertices[i].uv[j] = 0.5; //we don't have UV info... } } } if (gfxVertices.size() && indices.size()) { int shapeId = registerGraphicsShape(&gfxVertices[0].xyzw[0], gfxVertices.size(), &indices[0], indices.size(), B3_GL_TRIANGLES, -1); collisionShape->setUserIndex(shapeId); } } void OpenGLGuiHelper::syncPhysicsToGraphics(const btDiscreteDynamicsWorld* rbWorld) { //in VR mode, we skip the synchronization for the second eye if (m_data->m_vrMode && m_data->m_vrSkipShadowPass == 1) return; int numCollisionObjects = rbWorld->getNumCollisionObjects(); { B3_PROFILE("write all InstanceTransformToCPU"); for (int i = 0; i < numCollisionObjects; i++) { //B3_PROFILE("writeSingleInstanceTransformToCPU"); btCollisionObject* colObj = rbWorld->getCollisionObjectArray()[i]; btCollisionShape* collisionShape = colObj->getCollisionShape(); if (collisionShape->getShapeType() == SOFTBODY_SHAPE_PROXYTYPE && collisionShape->getUserIndex() >= 0) { const btSoftBody* psb = (const btSoftBody*)colObj; btAlignedObjectArray gfxVertices; if (psb->m_renderNodes.size() > 0) { gfxVertices.resize(psb->m_renderNodes.size()); for (int i = 0; i < psb->m_renderNodes.size(); i++) // Foreach face { gfxVertices[i].xyzw[0] = psb->m_renderNodes[i].m_x[0]; gfxVertices[i].xyzw[1] = psb->m_renderNodes[i].m_x[1]; gfxVertices[i].xyzw[2] = psb->m_renderNodes[i].m_x[2]; gfxVertices[i].xyzw[3] = psb->m_renderNodes[i].m_x[3]; gfxVertices[i].uv[0] = psb->m_renderNodes[i].m_uv1[0]; gfxVertices[i].uv[1] = psb->m_renderNodes[i].m_uv1[1]; //gfxVertices[i].normal[0] = psb->m_renderNodes[i]. gfxVertices[i].normal[0] = psb->m_renderNodes[i].m_normal[0]; gfxVertices[i].normal[1] = psb->m_renderNodes[i].m_normal[1]; gfxVertices[i].normal[2] = psb->m_renderNodes[i].m_normal[2]; } } else { btAlignedObjectArray indices; computeSoftBodyVertices(collisionShape, gfxVertices, indices); } m_data->m_glApp->m_renderer->updateShape(collisionShape->getUserIndex(), &gfxVertices[0].xyzw[0], gfxVertices.size()); continue; } btVector3 pos = colObj->getWorldTransform().getOrigin(); btQuaternion orn = colObj->getWorldTransform().getRotation(); int index = colObj->getUserIndex(); if (index >= 0) { m_data->m_glApp->m_renderer->writeSingleInstanceTransformToCPU(pos, orn, index); } } } { B3_PROFILE("writeTransforms"); m_data->m_glApp->m_renderer->writeTransforms(); } } void OpenGLGuiHelper::render(const btDiscreteDynamicsWorld* rbWorld) { if (m_data->m_vrMode) { //in VR, we skip the shadow generation for the second eye if (m_data->m_vrSkipShadowPass >= 1) { m_data->m_glApp->m_renderer->renderSceneInternal(B3_USE_SHADOWMAP_RENDERMODE); m_data->m_vrSkipShadowPass = 0; } else { m_data->m_glApp->m_renderer->renderScene(); m_data->m_vrSkipShadowPass++; } } else { m_data->m_glApp->m_renderer->renderScene(); } } void OpenGLGuiHelper::createPhysicsDebugDrawer(btDiscreteDynamicsWorld* rbWorld) { btAssert(rbWorld); if (m_data->m_debugDraw) { delete m_data->m_debugDraw; m_data->m_debugDraw = 0; } m_data->m_debugDraw = new MyDebugDrawer(m_data->m_glApp); rbWorld->setDebugDrawer(m_data->m_debugDraw); m_data->m_debugDraw->setDebugMode( btIDebugDraw::DBG_DrawWireframe + btIDebugDraw::DBG_DrawAabb //btIDebugDraw::DBG_DrawContactPoints ); } struct Common2dCanvasInterface* OpenGLGuiHelper::get2dCanvasInterface() { return m_data->m_glApp->m_2dCanvasInterface; } CommonParameterInterface* OpenGLGuiHelper::getParameterInterface() { return m_data->m_glApp->m_parameterInterface; } void OpenGLGuiHelper::setUpAxis(int axis) { m_data->m_glApp->setUpAxis(axis); } void OpenGLGuiHelper::setVisualizerFlagCallback(VisualizerFlagCallback callback) { m_data->m_visualizerFlagCallback = callback; } void OpenGLGuiHelper::setVisualizerFlag(int flag, int enable) { if (getRenderInterface() && flag == 16) //COV_ENABLE_PLANAR_REFLECTION { getRenderInterface()->setPlaneReflectionShapeIndex(enable); } if (m_data->m_visualizerFlagCallback) (m_data->m_visualizerFlagCallback)(flag, enable != 0); } void OpenGLGuiHelper::resetCamera(float camDist, float yaw, float pitch, float camPosX, float camPosY, float camPosZ) { if (getRenderInterface() && getRenderInterface()->getActiveCamera()) { getRenderInterface()->getActiveCamera()->setCameraDistance(camDist); getRenderInterface()->getActiveCamera()->setCameraPitch(pitch); getRenderInterface()->getActiveCamera()->setCameraYaw(yaw); getRenderInterface()->getActiveCamera()->setCameraTargetPosition(camPosX, camPosY, camPosZ); } } bool OpenGLGuiHelper::getCameraInfo(int* width, int* height, float viewMatrix[16], float projectionMatrix[16], float camUp[3], float camForward[3], float hor[3], float vert[3], float* yaw, float* pitch, float* camDist, float cameraTarget[3]) const { if (getRenderInterface() && getRenderInterface()->getActiveCamera()) { *width = m_data->m_glApp->m_window->getWidth(); *height = m_data->m_glApp->m_window->getHeight(); getRenderInterface()->getActiveCamera()->getCameraViewMatrix(viewMatrix); getRenderInterface()->getActiveCamera()->getCameraProjectionMatrix(projectionMatrix); getRenderInterface()->getActiveCamera()->getCameraUpVector(camUp); getRenderInterface()->getActiveCamera()->getCameraForwardVector(camForward); float top = 1.f; float bottom = -1.f; float tanFov = (top - bottom) * 0.5f / 1; float fov = btScalar(2.0) * btAtan(tanFov); btVector3 camPos, camTarget; getRenderInterface()->getActiveCamera()->getCameraPosition(camPos); getRenderInterface()->getActiveCamera()->getCameraTargetPosition(camTarget); btVector3 rayFrom = camPos; btVector3 rayForward = (camTarget - camPos); rayForward.normalize(); float farPlane = 10000.f; rayForward *= farPlane; btVector3 rightOffset; btVector3 cameraUp = btVector3(camUp[0], camUp[1], camUp[2]); btVector3 vertical = cameraUp; btVector3 hori; hori = rayForward.cross(vertical); hori.normalize(); vertical = hori.cross(rayForward); vertical.normalize(); float tanfov = tanf(0.5f * fov); hori *= 2.f * farPlane * tanfov; vertical *= 2.f * farPlane * tanfov; btScalar aspect = float(*width) / float(*height); hori *= aspect; //compute 'hor' and 'vert' vectors, useful to generate raytracer rays hor[0] = hori[0]; hor[1] = hori[1]; hor[2] = hori[2]; vert[0] = vertical[0]; vert[1] = vertical[1]; vert[2] = vertical[2]; *yaw = getRenderInterface()->getActiveCamera()->getCameraYaw(); *pitch = getRenderInterface()->getActiveCamera()->getCameraPitch(); *camDist = getRenderInterface()->getActiveCamera()->getCameraDistance(); cameraTarget[0] = camTarget[0]; cameraTarget[1] = camTarget[1]; cameraTarget[2] = camTarget[2]; return true; } return false; } void OpenGLGuiHelper::setProjectiveTextureMatrices(const float viewMatrix[16], const float projectionMatrix[16]) { m_data->m_glApp->m_renderer->setProjectiveTextureMatrices(viewMatrix, projectionMatrix); } void OpenGLGuiHelper::setProjectiveTexture(bool useProjectiveTexture) { m_data->m_glApp->m_renderer->setProjectiveTexture(useProjectiveTexture); } void OpenGLGuiHelper::copyCameraImageData(const float viewMatrix[16], const float projectionMatrix[16], unsigned char* pixelsRGBA, int rgbaBufferSizeInPixels, float* depthBuffer, int depthBufferSizeInPixels, int* segmentationMaskBuffer, int segmentationMaskBufferSizeInPixels, int startPixelIndex, int destinationWidth, int destinationHeight, int* numPixelsCopied) { int sourceWidth = btMin(destinationWidth, (int)(m_data->m_glApp->m_window->getWidth() * m_data->m_glApp->m_window->getRetinaScale())); int sourceHeight = btMin(destinationHeight, (int)(m_data->m_glApp->m_window->getHeight() * m_data->m_glApp->m_window->getRetinaScale())); m_data->m_glApp->setViewport(sourceWidth, sourceHeight); if (numPixelsCopied) *numPixelsCopied = 0; int numTotalPixels = destinationWidth * destinationHeight; int numRemainingPixels = numTotalPixels - startPixelIndex; int numBytesPerPixel = 4; //RGBA int numRequestedPixels = btMin(rgbaBufferSizeInPixels, numRemainingPixels); if (numRequestedPixels) { if (startPixelIndex == 0) { CommonCameraInterface* oldCam = getRenderInterface()->getActiveCamera(); SimpleCamera tempCam; getRenderInterface()->setActiveCamera(&tempCam); getRenderInterface()->getActiveCamera()->setVRCamera(viewMatrix, projectionMatrix); { BT_PROFILE("renderScene"); getRenderInterface()->renderScene(); } { BT_PROFILE("copy pixels"); btAlignedObjectArray sourceRgbaPixelBuffer; btAlignedObjectArray sourceDepthBuffer; //copy the image into our local cache sourceRgbaPixelBuffer.resize(sourceWidth * sourceHeight * numBytesPerPixel); sourceDepthBuffer.resize(sourceWidth * sourceHeight); { BT_PROFILE("getScreenPixels"); m_data->m_glApp->getScreenPixels(&(sourceRgbaPixelBuffer[0]), sourceRgbaPixelBuffer.size(), &sourceDepthBuffer[0], sizeof(float) * sourceDepthBuffer.size()); } m_data->m_rgbaPixelBuffer1.resize(destinationWidth * destinationHeight * numBytesPerPixel); m_data->m_depthBuffer1.resize(destinationWidth * destinationHeight); //rescale and flip { BT_PROFILE("resize and flip"); for (int j = 0; j < destinationHeight; j++) { for (int i = 0; i < destinationWidth; i++) { int xIndex = int(float(i) * (float(sourceWidth) / float(destinationWidth))); int yIndex = int(float(destinationHeight - 1 - j) * (float(sourceHeight) / float(destinationHeight))); btClamp(xIndex, 0, sourceWidth); btClamp(yIndex, 0, sourceHeight); int bytesPerPixel = 4; //RGBA int sourcePixelIndex = (xIndex + yIndex * sourceWidth) * bytesPerPixel; int sourceDepthIndex = xIndex + yIndex * sourceWidth; #define COPY4PIXELS 1 #ifdef COPY4PIXELS int* dst = (int*)&m_data->m_rgbaPixelBuffer1[(i + j * destinationWidth) * 4 + 0]; int* src = (int*)&sourceRgbaPixelBuffer[sourcePixelIndex + 0]; *dst = *src; #else m_data->m_rgbaPixelBuffer1[(i + j * destinationWidth) * 4 + 0] = sourceRgbaPixelBuffer[sourcePixelIndex + 0]; m_data->m_rgbaPixelBuffer1[(i + j * destinationWidth) * 4 + 1] = sourceRgbaPixelBuffer[sourcePixelIndex + 1]; m_data->m_rgbaPixelBuffer1[(i + j * destinationWidth) * 4 + 2] = sourceRgbaPixelBuffer[sourcePixelIndex + 2]; m_data->m_rgbaPixelBuffer1[(i + j * destinationWidth) * 4 + 3] = 255; #endif if (depthBuffer) { m_data->m_depthBuffer1[i + j * destinationWidth] = sourceDepthBuffer[sourceDepthIndex]; } } } } } //segmentation mask if (segmentationMaskBuffer) { { m_data->m_glApp->m_window->startRendering(); m_data->m_glApp->setViewport(sourceWidth, sourceHeight); BT_PROFILE("renderScene"); getRenderInterface()->renderSceneInternal(B3_SEGMENTATION_MASK_RENDERMODE); } { BT_PROFILE("copy pixels"); btAlignedObjectArray sourceRgbaPixelBuffer; btAlignedObjectArray sourceDepthBuffer; //copy the image into our local cache sourceRgbaPixelBuffer.resize(sourceWidth * sourceHeight * numBytesPerPixel); sourceDepthBuffer.resize(sourceWidth * sourceHeight); { BT_PROFILE("getScreenPixelsSegmentationMask"); m_data->m_glApp->getScreenPixels(&(sourceRgbaPixelBuffer[0]), sourceRgbaPixelBuffer.size(), &sourceDepthBuffer[0], sizeof(float) * sourceDepthBuffer.size()); } m_data->m_segmentationMaskBuffer.resize(destinationWidth * destinationHeight, -1); //rescale and flip { BT_PROFILE("resize and flip segmentation mask"); for (int j = 0; j < destinationHeight; j++) { for (int i = 0; i < destinationWidth; i++) { int xIndex = int(float(i) * (float(sourceWidth) / float(destinationWidth))); int yIndex = int(float(destinationHeight - 1 - j) * (float(sourceHeight) / float(destinationHeight))); btClamp(xIndex, 0, sourceWidth); btClamp(yIndex, 0, sourceHeight); int bytesPerPixel = 4; //RGBA int sourcePixelIndex = (xIndex + yIndex * sourceWidth) * bytesPerPixel; int sourceDepthIndex = xIndex + yIndex * sourceWidth; if (segmentationMaskBuffer) { float depth = sourceDepthBuffer[sourceDepthIndex]; if (depth < 1) { int segMask = sourceRgbaPixelBuffer[sourcePixelIndex + 0] + 256 * (sourceRgbaPixelBuffer[sourcePixelIndex + 1]) + 256 * 256 * (sourceRgbaPixelBuffer[sourcePixelIndex + 2]); m_data->m_segmentationMaskBuffer[i + j * destinationWidth] = segMask; } else { m_data->m_segmentationMaskBuffer[i + j * destinationWidth] = -1; } } } } } } } getRenderInterface()->setActiveCamera(oldCam); if (1) { getRenderInterface()->getActiveCamera()->disableVRCamera(); DrawGridData dg; dg.upAxis = m_data->m_glApp->getUpAxis(); getRenderInterface()->updateCamera(dg.upAxis); m_data->m_glApp->m_window->startRendering(); } } if (pixelsRGBA) { BT_PROFILE("copy rgba pixels"); for (int i = 0; i < numRequestedPixels * numBytesPerPixel; i++) { pixelsRGBA[i] = m_data->m_rgbaPixelBuffer1[i + startPixelIndex * numBytesPerPixel]; } } if (depthBuffer) { BT_PROFILE("copy depth buffer pixels"); for (int i = 0; i < numRequestedPixels; i++) { depthBuffer[i] = m_data->m_depthBuffer1[i + startPixelIndex]; } } if (segmentationMaskBuffer) { BT_PROFILE("copy segmentation mask pixels"); for (int i = 0; i < numRequestedPixels; i++) { segmentationMaskBuffer[i] = m_data->m_segmentationMaskBuffer[i + startPixelIndex]; } } if (numPixelsCopied) *numPixelsCopied = numRequestedPixels; } m_data->m_glApp->setViewport(-1, -1); } struct MyConvertPointerSizeT { union { const void* m_ptr; size_t m_int; }; }; bool shapePointerCompareFunc(const btCollisionObject* colA, const btCollisionObject* colB) { MyConvertPointerSizeT a, b; a.m_ptr = colA->getCollisionShape(); b.m_ptr = colB->getCollisionShape(); return (a.m_int < b.m_int); } void OpenGLGuiHelper::autogenerateGraphicsObjects(btDiscreteDynamicsWorld* rbWorld) { //sort the collision objects based on collision shape, the gfx library requires instances that re-use a shape to be added after eachother btAlignedObjectArray sortedObjects; sortedObjects.reserve(rbWorld->getNumCollisionObjects()); for (int i = 0; i < rbWorld->getNumCollisionObjects(); i++) { btCollisionObject* colObj = rbWorld->getCollisionObjectArray()[i]; sortedObjects.push_back(colObj); } sortedObjects.quickSort(shapePointerCompareFunc); for (int i = 0; i < sortedObjects.size(); i++) { btCollisionObject* colObj = sortedObjects[i]; //btRigidBody* body = btRigidBody::upcast(colObj); //does this also work for btMultiBody/btMultiBodyLinkCollider? btSoftBody* sb = btSoftBody::upcast(colObj); if (sb) { colObj->getCollisionShape()->setUserPointer(sb); } createCollisionShapeGraphicsObject(colObj->getCollisionShape()); int colorIndex = colObj->getBroadphaseHandle()->getUid() & 3; btVector4 color; color = sColors[colorIndex]; if (colObj->getCollisionShape()->getShapeType() == STATIC_PLANE_PROXYTYPE) { color.setValue(1, 1, 1, 1); } createCollisionObjectGraphicsObject(colObj, color); } } void OpenGLGuiHelper::drawText3D(const char* txt, float position[3], float orientation[4], float color[4], float size, int optionFlags) { B3_PROFILE("OpenGLGuiHelper::drawText3D"); btAssert(m_data->m_glApp); m_data->m_glApp->drawText3D(txt, position, orientation, color, size, optionFlags); } void OpenGLGuiHelper::drawText3D(const char* txt, float posX, float posY, float posZ, float size) { B3_PROFILE("OpenGLGuiHelper::drawText3D"); btAssert(m_data->m_glApp); m_data->m_glApp->drawText3D(txt, posX, posY, posZ, size); } struct CommonGraphicsApp* OpenGLGuiHelper::getAppInterface() { return m_data->m_glApp; } void OpenGLGuiHelper::dumpFramesToVideo(const char* mp4FileName) { if (m_data->m_glApp) { m_data->m_glApp->dumpFramesToVideo(mp4FileName); } } void OpenGLGuiHelper::computeSoftBodyVertices(btCollisionShape* collisionShape, btAlignedObjectArray& gfxVertices, btAlignedObjectArray& indices) { if (collisionShape->getUserPointer() == 0) return; b3Assert(collisionShape->getUserPointer()); btSoftBody* psb = (btSoftBody*)collisionShape->getUserPointer(); gfxVertices.resize(psb->m_faces.size() * 3); for (int i = 0; i < psb->m_faces.size(); i++) // Foreach face { for (int k = 0; k < 3; k++) // Foreach vertex on a face { int currentIndex = i * 3 + k; for (int j = 0; j < 3; j++) { gfxVertices[currentIndex].xyzw[j] = psb->m_faces[i].m_n[k]->m_x[j]; } for (int j = 0; j < 3; j++) { gfxVertices[currentIndex].normal[j] = psb->m_faces[i].m_n[k]->m_n[j]; } for (int j = 0; j < 2; j++) { gfxVertices[currentIndex].uv[j] = psb->m_faces[i].m_n[k]->m_x[j]; } indices.push_back(currentIndex); } } } void OpenGLGuiHelper::updateShape(int shapeIndex, float* vertices, int numVertices) { m_data->m_glApp->m_renderer->updateShape(shapeIndex, vertices, numVertices); }