/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ ///September 2006: VehicleDemo is work in progress, this file is mostly just a placeholder ///This VehicleDemo file is very early in development, please check it later ///@todo is a basic engine model: ///A function that maps user input (throttle) into torque/force applied on the wheels ///with gears etc. #include "btBulletDynamicsCommon.h" #include "BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h" #include "BulletDynamics/MLCPSolvers/btDantzigSolver.h" #include "BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h" #include "BulletDynamics/MLCPSolvers/btMLCPSolver.h" class btVehicleTuning; struct btVehicleRaycaster; class btCollisionShape; #include "BulletDynamics/Vehicle/btRaycastVehicle.h" #include "BulletDynamics/ConstraintSolver/btHingeConstraint.h" #include "BulletDynamics/ConstraintSolver/btSliderConstraint.h" #include "../CommonInterfaces/CommonExampleInterface.h" #include "LinearMath/btAlignedObjectArray.h" #include "btBulletCollisionCommon.h" #include "../CommonInterfaces/CommonGUIHelperInterface.h" #include "../CommonInterfaces/CommonRenderInterface.h" #include "../CommonInterfaces/CommonWindowInterface.h" #include "../CommonInterfaces/CommonGraphicsAppInterface.h" ///VehicleDemo shows how to setup and use the built-in raycast vehicle class ForkLiftDemo : public CommonExampleInterface { public: GUIHelperInterface* m_guiHelper; /* extra stuff*/ btVector3 m_cameraPosition; class btDiscreteDynamicsWorld* m_dynamicsWorld; btDiscreteDynamicsWorld* getDynamicsWorld() { return m_dynamicsWorld; } btRigidBody* m_carChassis; btRigidBody* localCreateRigidBody(btScalar mass, const btTransform& worldTransform, btCollisionShape* colSape); int m_wheelInstances[4]; //---------------------------- btRigidBody* m_liftBody; btVector3 m_liftStartPos; btHingeConstraint* m_liftHinge; btRigidBody* m_forkBody; btVector3 m_forkStartPos; btSliderConstraint* m_forkSlider; btRigidBody* m_loadBody; btVector3 m_loadStartPos; void lockLiftHinge(void); void lockForkSlider(void); bool m_useDefaultCamera; //---------------------------- btAlignedObjectArray m_collisionShapes; class btBroadphaseInterface* m_overlappingPairCache; class btCollisionDispatcher* m_dispatcher; class btConstraintSolver* m_constraintSolver; class btDefaultCollisionConfiguration* m_collisionConfiguration; class btTriangleIndexVertexArray* m_indexVertexArrays; btVector3* m_vertices; btRaycastVehicle::btVehicleTuning m_tuning; btVehicleRaycaster* m_vehicleRayCaster; btRaycastVehicle* m_vehicle; btCollisionShape* m_wheelShape; float m_cameraHeight; float m_minCameraDistance; float m_maxCameraDistance; ForkLiftDemo(struct GUIHelperInterface* helper); virtual ~ForkLiftDemo(); virtual void stepSimulation(float deltaTime); virtual void resetForklift(); virtual void clientResetScene(); virtual void displayCallback(); virtual void specialKeyboard(int key, int x, int y); virtual void specialKeyboardUp(int key, int x, int y); virtual bool mouseMoveCallback(float x, float y) { return false; } virtual bool mouseButtonCallback(int button, int state, float x, float y) { return false; } virtual bool keyboardCallback(int key, int state); virtual void renderScene(); virtual void physicsDebugDraw(int debugFlags); void initPhysics(); void exitPhysics(); virtual void resetCamera() { float dist = 8; float pitch = -32; float yaw = -45; float targetPos[3] = {-0.33, -0.72, 4.5}; m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]); } /*static DemoApplication* Create() { ForkLiftDemo* demo = new ForkLiftDemo(); demo->myinit(); demo->initPhysics(); return demo; } */ }; btScalar maxMotorImpulse = 4000.f; //the sequential impulse solver has difficulties dealing with large mass ratios (differences), between loadMass and the fork parts btScalar loadMass = 350.f; // //btScalar loadMass = 10.f;//this should work fine for the SI solver #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #ifndef M_PI_2 #define M_PI_2 1.57079632679489661923 #endif #ifndef M_PI_4 #define M_PI_4 0.785398163397448309616 #endif int rightIndex = 0; int upIndex = 1; int forwardIndex = 2; btVector3 wheelDirectionCS0(0, -1, 0); btVector3 wheelAxleCS(-1, 0, 0); bool useMCLPSolver = true; #include //printf debugging #include "ForkLiftDemo.h" ///btRaycastVehicle is the interface for the constraint that implements the raycast vehicle ///notice that for higher-quality slow-moving vehicles, another approach might be better ///implementing explicit hinged-wheel constraints with cylinder collision, rather then raycasts float gEngineForce = 0.f; float defaultBreakingForce = 10.f; float gBreakingForce = 100.f; float maxEngineForce = 1000.f; //this should be engine/velocity dependent float maxBreakingForce = 100.f; float gVehicleSteering = 0.f; float steeringIncrement = 0.04f; float steeringClamp = 0.3f; float wheelRadius = 0.5f; float wheelWidth = 0.4f; float wheelFriction = 1000; //BT_LARGE_FLOAT; float suspensionStiffness = 20.f; float suspensionDamping = 2.3f; float suspensionCompression = 4.4f; float rollInfluence = 0.1f; //1.0f; btScalar suspensionRestLength(0.6); #define CUBE_HALF_EXTENTS 1 //////////////////////////////////// ForkLiftDemo::ForkLiftDemo(struct GUIHelperInterface* helper) : m_guiHelper(helper), m_carChassis(0), m_liftBody(0), m_forkBody(0), m_loadBody(0), m_indexVertexArrays(0), m_vertices(0), m_cameraHeight(4.f), m_minCameraDistance(3.f), m_maxCameraDistance(10.f) { helper->setUpAxis(1); m_vehicle = 0; m_wheelShape = 0; m_cameraPosition = btVector3(30, 30, 30); m_useDefaultCamera = false; // setTexturing(true); // setShadows(true); } void ForkLiftDemo::exitPhysics() { //cleanup in the reverse order of creation/initialization //remove the rigidbodies from the dynamics world and delete them int i; for (i = m_dynamicsWorld->getNumCollisionObjects() - 1; i >= 0; i--) { btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i]; btRigidBody* body = btRigidBody::upcast(obj); if (body && body->getMotionState()) { while (body->getNumConstraintRefs()) { btTypedConstraint* constraint = body->getConstraintRef(0); m_dynamicsWorld->removeConstraint(constraint); delete constraint; } delete body->getMotionState(); m_dynamicsWorld->removeRigidBody(body); } else { m_dynamicsWorld->removeCollisionObject(obj); } delete obj; } //delete collision shapes for (int j = 0; j < m_collisionShapes.size(); j++) { btCollisionShape* shape = m_collisionShapes[j]; delete shape; } m_collisionShapes.clear(); delete m_indexVertexArrays; delete m_vertices; //delete dynamics world delete m_dynamicsWorld; m_dynamicsWorld = 0; delete m_vehicleRayCaster; m_vehicleRayCaster = 0; delete m_vehicle; m_vehicle = 0; delete m_wheelShape; m_wheelShape = 0; //delete solver delete m_constraintSolver; m_constraintSolver = 0; //delete broadphase delete m_overlappingPairCache; m_overlappingPairCache = 0; //delete dispatcher delete m_dispatcher; m_dispatcher = 0; delete m_collisionConfiguration; m_collisionConfiguration = 0; } ForkLiftDemo::~ForkLiftDemo() { //exitPhysics(); } void ForkLiftDemo::initPhysics() { int upAxis = 1; m_guiHelper->setUpAxis(upAxis); btVector3 groundExtents(50, 50, 50); groundExtents[upAxis] = 3; btCollisionShape* groundShape = new btBoxShape(groundExtents); m_collisionShapes.push_back(groundShape); m_collisionConfiguration = new btDefaultCollisionConfiguration(); m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration); btVector3 worldMin(-1000, -1000, -1000); btVector3 worldMax(1000, 1000, 1000); m_overlappingPairCache = new btAxisSweep3(worldMin, worldMax); if (useMCLPSolver) { btDantzigSolver* mlcp = new btDantzigSolver(); //btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel; btMLCPSolver* sol = new btMLCPSolver(mlcp); m_constraintSolver = sol; } else { m_constraintSolver = new btSequentialImpulseConstraintSolver(); } m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher, m_overlappingPairCache, m_constraintSolver, m_collisionConfiguration); if (useMCLPSolver) { m_dynamicsWorld->getSolverInfo().m_minimumSolverBatchSize = 1; //for direct solver it is better to have a small A matrix } else { m_dynamicsWorld->getSolverInfo().m_minimumSolverBatchSize = 128; //for direct solver, it is better to solve multiple objects together, small batches have high overhead } m_dynamicsWorld->getSolverInfo().m_globalCfm = 0.00001; m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld); //m_dynamicsWorld->setGravity(btVector3(0,0,0)); btTransform tr; tr.setIdentity(); tr.setOrigin(btVector3(0, -3, 0)); //either use heightfield or triangle mesh //create ground object localCreateRigidBody(0, tr, groundShape); btCollisionShape* chassisShape = new btBoxShape(btVector3(1.f, 0.5f, 2.f)); m_collisionShapes.push_back(chassisShape); btCompoundShape* compound = new btCompoundShape(); m_collisionShapes.push_back(compound); btTransform localTrans; localTrans.setIdentity(); //localTrans effectively shifts the center of mass with respect to the chassis localTrans.setOrigin(btVector3(0, 1, 0)); compound->addChildShape(localTrans, chassisShape); { btCollisionShape* suppShape = new btBoxShape(btVector3(0.5f, 0.1f, 0.5f)); btTransform suppLocalTrans; suppLocalTrans.setIdentity(); //localTrans effectively shifts the center of mass with respect to the chassis suppLocalTrans.setOrigin(btVector3(0, 1.0, 2.5)); compound->addChildShape(suppLocalTrans, suppShape); } tr.setOrigin(btVector3(0, 0.f, 0)); m_carChassis = localCreateRigidBody(800, tr, compound); //chassisShape); //m_carChassis->setDamping(0.2,0.2); m_wheelShape = new btCylinderShapeX(btVector3(wheelWidth, wheelRadius, wheelRadius)); m_guiHelper->createCollisionShapeGraphicsObject(m_wheelShape); int wheelGraphicsIndex = m_wheelShape->getUserIndex(); const float position[4] = {0, 10, 10, 0}; const float quaternion[4] = {0, 0, 0, 1}; const float color[4] = {0, 1, 0, 1}; const float scaling[4] = {1, 1, 1, 1}; for (int i = 0; i < 4; i++) { m_wheelInstances[i] = m_guiHelper->registerGraphicsInstance(wheelGraphicsIndex, position, quaternion, color, scaling); } { btCollisionShape* liftShape = new btBoxShape(btVector3(0.5f, 2.0f, 0.05f)); m_collisionShapes.push_back(liftShape); btTransform liftTrans; m_liftStartPos = btVector3(0.0f, 2.5f, 3.05f); liftTrans.setIdentity(); liftTrans.setOrigin(m_liftStartPos); m_liftBody = localCreateRigidBody(10, liftTrans, liftShape); btTransform localA, localB; localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0, M_PI_2, 0); localA.setOrigin(btVector3(0.0, 1.0, 3.05)); localB.getBasis().setEulerZYX(0, M_PI_2, 0); localB.setOrigin(btVector3(0.0, -1.5, -0.05)); m_liftHinge = new btHingeConstraint(*m_carChassis, *m_liftBody, localA, localB); // m_liftHinge->setLimit(-LIFT_EPS, LIFT_EPS); m_liftHinge->setLimit(0.0f, 0.0f); m_dynamicsWorld->addConstraint(m_liftHinge, true); btCollisionShape* forkShapeA = new btBoxShape(btVector3(1.0f, 0.1f, 0.1f)); m_collisionShapes.push_back(forkShapeA); btCompoundShape* forkCompound = new btCompoundShape(); m_collisionShapes.push_back(forkCompound); btTransform forkLocalTrans; forkLocalTrans.setIdentity(); forkCompound->addChildShape(forkLocalTrans, forkShapeA); btCollisionShape* forkShapeB = new btBoxShape(btVector3(0.1f, 0.02f, 0.6f)); m_collisionShapes.push_back(forkShapeB); forkLocalTrans.setIdentity(); forkLocalTrans.setOrigin(btVector3(-0.9f, -0.08f, 0.7f)); forkCompound->addChildShape(forkLocalTrans, forkShapeB); btCollisionShape* forkShapeC = new btBoxShape(btVector3(0.1f, 0.02f, 0.6f)); m_collisionShapes.push_back(forkShapeC); forkLocalTrans.setIdentity(); forkLocalTrans.setOrigin(btVector3(0.9f, -0.08f, 0.7f)); forkCompound->addChildShape(forkLocalTrans, forkShapeC); btTransform forkTrans; m_forkStartPos = btVector3(0.0f, 0.6f, 3.2f); forkTrans.setIdentity(); forkTrans.setOrigin(m_forkStartPos); m_forkBody = localCreateRigidBody(5, forkTrans, forkCompound); localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0, 0, M_PI_2); localA.setOrigin(btVector3(0.0f, -1.9f, 0.05f)); localB.getBasis().setEulerZYX(0, 0, M_PI_2); localB.setOrigin(btVector3(0.0, 0.0, -0.1)); m_forkSlider = new btSliderConstraint(*m_liftBody, *m_forkBody, localA, localB, true); m_forkSlider->setLowerLinLimit(0.1f); m_forkSlider->setUpperLinLimit(0.1f); // m_forkSlider->setLowerAngLimit(-LIFT_EPS); // m_forkSlider->setUpperAngLimit(LIFT_EPS); m_forkSlider->setLowerAngLimit(0.0f); m_forkSlider->setUpperAngLimit(0.0f); m_dynamicsWorld->addConstraint(m_forkSlider, true); btCompoundShape* loadCompound = new btCompoundShape(); m_collisionShapes.push_back(loadCompound); btCollisionShape* loadShapeA = new btBoxShape(btVector3(2.0f, 0.5f, 0.5f)); m_collisionShapes.push_back(loadShapeA); btTransform loadTrans; loadTrans.setIdentity(); loadCompound->addChildShape(loadTrans, loadShapeA); btCollisionShape* loadShapeB = new btBoxShape(btVector3(0.1f, 1.0f, 1.0f)); m_collisionShapes.push_back(loadShapeB); loadTrans.setIdentity(); loadTrans.setOrigin(btVector3(2.1f, 0.0f, 0.0f)); loadCompound->addChildShape(loadTrans, loadShapeB); btCollisionShape* loadShapeC = new btBoxShape(btVector3(0.1f, 1.0f, 1.0f)); m_collisionShapes.push_back(loadShapeC); loadTrans.setIdentity(); loadTrans.setOrigin(btVector3(-2.1f, 0.0f, 0.0f)); loadCompound->addChildShape(loadTrans, loadShapeC); loadTrans.setIdentity(); m_loadStartPos = btVector3(0.0f, 3.5f, 7.0f); loadTrans.setOrigin(m_loadStartPos); m_loadBody = localCreateRigidBody(loadMass, loadTrans, loadCompound); } /// create vehicle { m_vehicleRayCaster = new btDefaultVehicleRaycaster(m_dynamicsWorld); m_vehicle = new btRaycastVehicle(m_tuning, m_carChassis, m_vehicleRayCaster); ///never deactivate the vehicle m_carChassis->setActivationState(DISABLE_DEACTIVATION); m_dynamicsWorld->addVehicle(m_vehicle); float connectionHeight = 1.2f; bool isFrontWheel = true; //choose coordinate system m_vehicle->setCoordinateSystem(rightIndex, upIndex, forwardIndex); btVector3 connectionPointCS0(CUBE_HALF_EXTENTS - (0.3 * wheelWidth), connectionHeight, 2 * CUBE_HALF_EXTENTS - wheelRadius); m_vehicle->addWheel(connectionPointCS0, wheelDirectionCS0, wheelAxleCS, suspensionRestLength, wheelRadius, m_tuning, isFrontWheel); connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS + (0.3 * wheelWidth), connectionHeight, 2 * CUBE_HALF_EXTENTS - wheelRadius); m_vehicle->addWheel(connectionPointCS0, wheelDirectionCS0, wheelAxleCS, suspensionRestLength, wheelRadius, m_tuning, isFrontWheel); connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS + (0.3 * wheelWidth), connectionHeight, -2 * CUBE_HALF_EXTENTS + wheelRadius); isFrontWheel = false; m_vehicle->addWheel(connectionPointCS0, wheelDirectionCS0, wheelAxleCS, suspensionRestLength, wheelRadius, m_tuning, isFrontWheel); connectionPointCS0 = btVector3(CUBE_HALF_EXTENTS - (0.3 * wheelWidth), connectionHeight, -2 * CUBE_HALF_EXTENTS + wheelRadius); m_vehicle->addWheel(connectionPointCS0, wheelDirectionCS0, wheelAxleCS, suspensionRestLength, wheelRadius, m_tuning, isFrontWheel); for (int i = 0; i < m_vehicle->getNumWheels(); i++) { btWheelInfo& wheel = m_vehicle->getWheelInfo(i); wheel.m_suspensionStiffness = suspensionStiffness; wheel.m_wheelsDampingRelaxation = suspensionDamping; wheel.m_wheelsDampingCompression = suspensionCompression; wheel.m_frictionSlip = wheelFriction; wheel.m_rollInfluence = rollInfluence; } } resetForklift(); // setCameraDistance(26.f); m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld); } void ForkLiftDemo::physicsDebugDraw(int debugFlags) { if (m_dynamicsWorld && m_dynamicsWorld->getDebugDrawer()) { m_dynamicsWorld->getDebugDrawer()->setDebugMode(debugFlags); m_dynamicsWorld->debugDrawWorld(); } } //to be implemented by the demo void ForkLiftDemo::renderScene() { m_guiHelper->syncPhysicsToGraphics(m_dynamicsWorld); for (int i = 0; i < m_vehicle->getNumWheels(); i++) { //synchronize the wheels with the (interpolated) chassis worldtransform m_vehicle->updateWheelTransform(i, true); CommonRenderInterface* renderer = m_guiHelper->getRenderInterface(); if (renderer) { btTransform tr = m_vehicle->getWheelInfo(i).m_worldTransform; btVector3 pos = tr.getOrigin(); btQuaternion orn = tr.getRotation(); renderer->writeSingleInstanceTransformToCPU(pos, orn, m_wheelInstances[i]); } } m_guiHelper->render(m_dynamicsWorld); ATTRIBUTE_ALIGNED16(btScalar) m[16]; int i; btVector3 wheelColor(1, 0, 0); btVector3 worldBoundsMin, worldBoundsMax; getDynamicsWorld()->getBroadphase()->getBroadphaseAabb(worldBoundsMin, worldBoundsMax); for (i = 0; i < m_vehicle->getNumWheels(); i++) { //synchronize the wheels with the (interpolated) chassis worldtransform m_vehicle->updateWheelTransform(i, true); //draw wheels (cylinders) m_vehicle->getWheelInfo(i).m_worldTransform.getOpenGLMatrix(m); // m_shapeDrawer->drawOpenGL(m,m_wheelShape,wheelColor,getDebugMode(),worldBoundsMin,worldBoundsMax); } #if 0 int lineWidth=400; int xStart = m_glutScreenWidth - lineWidth; int yStart = 20; if((getDebugMode() & btIDebugDraw::DBG_NoHelpText)==0) { setOrthographicProjection(); glDisable(GL_LIGHTING); glColor3f(0, 0, 0); char buf[124]; sprintf(buf,"SHIFT+Cursor Left/Right - rotate lift"); GLDebugDrawString(xStart,20,buf); yStart+=20; sprintf(buf,"SHIFT+Cursor UP/Down - fork up/down"); yStart+=20; GLDebugDrawString(xStart,yStart,buf); if (m_useDefaultCamera) { sprintf(buf,"F5 - camera mode (free)"); } else { sprintf(buf,"F5 - camera mode (follow)"); } yStart+=20; GLDebugDrawString(xStart,yStart,buf); yStart+=20; if (m_dynamicsWorld->getConstraintSolver()->getSolverType()==BT_MLCP_SOLVER) { sprintf(buf,"F6 - solver (direct MLCP)"); } else { sprintf(buf,"F6 - solver (sequential impulse)"); } GLDebugDrawString(xStart,yStart,buf); btDiscreteDynamicsWorld* world = (btDiscreteDynamicsWorld*) m_dynamicsWorld; if (world->getLatencyMotionStateInterpolation()) { sprintf(buf,"F7 - motionstate interpolation (on)"); } else { sprintf(buf,"F7 - motionstate interpolation (off)"); } yStart+=20; GLDebugDrawString(xStart,yStart,buf); sprintf(buf,"Click window for keyboard focus"); yStart+=20; GLDebugDrawString(xStart,yStart,buf); resetPerspectiveProjection(); glEnable(GL_LIGHTING); } #endif } void ForkLiftDemo::stepSimulation(float deltaTime) { //glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); { int wheelIndex = 2; m_vehicle->applyEngineForce(gEngineForce, wheelIndex); m_vehicle->setBrake(gBreakingForce, wheelIndex); wheelIndex = 3; m_vehicle->applyEngineForce(gEngineForce, wheelIndex); m_vehicle->setBrake(gBreakingForce, wheelIndex); wheelIndex = 0; m_vehicle->setSteeringValue(gVehicleSteering, wheelIndex); wheelIndex = 1; m_vehicle->setSteeringValue(gVehicleSteering, wheelIndex); } float dt = deltaTime; if (m_dynamicsWorld) { //during idle mode, just run 1 simulation step maximum int maxSimSubSteps = 2; int numSimSteps; numSimSteps = m_dynamicsWorld->stepSimulation(dt, maxSimSubSteps); if (m_dynamicsWorld->getConstraintSolver()->getSolverType() == BT_MLCP_SOLVER) { btMLCPSolver* sol = (btMLCPSolver*)m_dynamicsWorld->getConstraintSolver(); int numFallbacks = sol->getNumFallbacks(); if (numFallbacks) { static int totalFailures = 0; totalFailures += numFallbacks; printf("MLCP solver failed %d times, falling back to btSequentialImpulseSolver (SI)\n", totalFailures); } sol->setNumFallbacks(0); } //#define VERBOSE_FEEDBACK #ifdef VERBOSE_FEEDBACK if (!numSimSteps) printf("Interpolated transforms\n"); else { if (numSimSteps > maxSimSubSteps) { //detect dropping frames printf("Dropped (%i) simulation steps out of %i\n", numSimSteps - maxSimSubSteps, numSimSteps); } else { printf("Simulated (%i) steps\n", numSimSteps); } } #endif //VERBOSE_FEEDBACK } } void ForkLiftDemo::displayCallback(void) { // glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); //renderme(); //optional but useful: debug drawing if (m_dynamicsWorld) m_dynamicsWorld->debugDrawWorld(); // glFlush(); // glutSwapBuffers(); } void ForkLiftDemo::clientResetScene() { exitPhysics(); initPhysics(); } void ForkLiftDemo::resetForklift() { gVehicleSteering = 0.f; gBreakingForce = defaultBreakingForce; gEngineForce = 0.f; m_carChassis->setCenterOfMassTransform(btTransform::getIdentity()); m_carChassis->setLinearVelocity(btVector3(0, 0, 0)); m_carChassis->setAngularVelocity(btVector3(0, 0, 0)); m_dynamicsWorld->getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(m_carChassis->getBroadphaseHandle(), getDynamicsWorld()->getDispatcher()); if (m_vehicle) { m_vehicle->resetSuspension(); for (int i = 0; i < m_vehicle->getNumWheels(); i++) { //synchronize the wheels with the (interpolated) chassis worldtransform m_vehicle->updateWheelTransform(i, true); } } btTransform liftTrans; liftTrans.setIdentity(); liftTrans.setOrigin(m_liftStartPos); m_liftBody->activate(); m_liftBody->setCenterOfMassTransform(liftTrans); m_liftBody->setLinearVelocity(btVector3(0, 0, 0)); m_liftBody->setAngularVelocity(btVector3(0, 0, 0)); btTransform forkTrans; forkTrans.setIdentity(); forkTrans.setOrigin(m_forkStartPos); m_forkBody->activate(); m_forkBody->setCenterOfMassTransform(forkTrans); m_forkBody->setLinearVelocity(btVector3(0, 0, 0)); m_forkBody->setAngularVelocity(btVector3(0, 0, 0)); // m_liftHinge->setLimit(-LIFT_EPS, LIFT_EPS); m_liftHinge->setLimit(0.0f, 0.0f); m_liftHinge->enableAngularMotor(false, 0, 0); m_forkSlider->setLowerLinLimit(0.1f); m_forkSlider->setUpperLinLimit(0.1f); m_forkSlider->setPoweredLinMotor(false); btTransform loadTrans; loadTrans.setIdentity(); loadTrans.setOrigin(m_loadStartPos); m_loadBody->activate(); m_loadBody->setCenterOfMassTransform(loadTrans); m_loadBody->setLinearVelocity(btVector3(0, 0, 0)); m_loadBody->setAngularVelocity(btVector3(0, 0, 0)); } bool ForkLiftDemo::keyboardCallback(int key, int state) { bool handled = false; bool isShiftPressed = m_guiHelper->getAppInterface()->m_window->isModifierKeyPressed(B3G_SHIFT); if (state) { if (isShiftPressed) { switch (key) { case B3G_LEFT_ARROW: { m_liftHinge->setLimit(-M_PI / 16.0f, M_PI / 8.0f); m_liftHinge->enableAngularMotor(true, -0.1, maxMotorImpulse); handled = true; break; } case B3G_RIGHT_ARROW: { m_liftHinge->setLimit(-M_PI / 16.0f, M_PI / 8.0f); m_liftHinge->enableAngularMotor(true, 0.1, maxMotorImpulse); handled = true; break; } case B3G_UP_ARROW: { m_forkSlider->setLowerLinLimit(0.1f); m_forkSlider->setUpperLinLimit(3.9f); m_forkSlider->setPoweredLinMotor(true); m_forkSlider->setMaxLinMotorForce(maxMotorImpulse); m_forkSlider->setTargetLinMotorVelocity(1.0); handled = true; break; } case B3G_DOWN_ARROW: { m_forkSlider->setLowerLinLimit(0.1f); m_forkSlider->setUpperLinLimit(3.9f); m_forkSlider->setPoweredLinMotor(true); m_forkSlider->setMaxLinMotorForce(maxMotorImpulse); m_forkSlider->setTargetLinMotorVelocity(-1.0); handled = true; break; } } } else { switch (key) { case B3G_LEFT_ARROW: { handled = true; gVehicleSteering += steeringIncrement; if (gVehicleSteering > steeringClamp) gVehicleSteering = steeringClamp; break; } case B3G_RIGHT_ARROW: { handled = true; gVehicleSteering -= steeringIncrement; if (gVehicleSteering < -steeringClamp) gVehicleSteering = -steeringClamp; break; } case B3G_UP_ARROW: { handled = true; gEngineForce = maxEngineForce; gBreakingForce = 0.f; break; } case B3G_DOWN_ARROW: { handled = true; gEngineForce = -maxEngineForce; gBreakingForce = 0.f; break; } case B3G_F7: { handled = true; btDiscreteDynamicsWorld* world = (btDiscreteDynamicsWorld*)m_dynamicsWorld; world->setLatencyMotionStateInterpolation(!world->getLatencyMotionStateInterpolation()); printf("world latencyMotionStateInterpolation = %d\n", world->getLatencyMotionStateInterpolation()); break; } case B3G_F6: { handled = true; //switch solver (needs demo restart) useMCLPSolver = !useMCLPSolver; printf("switching to useMLCPSolver = %d\n", useMCLPSolver); delete m_constraintSolver; if (useMCLPSolver) { btDantzigSolver* mlcp = new btDantzigSolver(); //btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel; btMLCPSolver* sol = new btMLCPSolver(mlcp); m_constraintSolver = sol; } else { m_constraintSolver = new btSequentialImpulseConstraintSolver(); } m_dynamicsWorld->setConstraintSolver(m_constraintSolver); //exitPhysics(); //initPhysics(); break; } case B3G_F5: handled = true; m_useDefaultCamera = !m_useDefaultCamera; break; default: break; } } } else { switch (key) { case B3G_UP_ARROW: { lockForkSlider(); gEngineForce = 0.f; gBreakingForce = defaultBreakingForce; handled = true; break; } case B3G_DOWN_ARROW: { lockForkSlider(); gEngineForce = 0.f; gBreakingForce = defaultBreakingForce; handled = true; break; } case B3G_LEFT_ARROW: case B3G_RIGHT_ARROW: { lockLiftHinge(); handled = true; break; } default: break; } } return handled; } void ForkLiftDemo::specialKeyboardUp(int key, int x, int y) { #if 0 #endif } void ForkLiftDemo::specialKeyboard(int key, int x, int y) { #if 0 if (key==GLUT_KEY_END) return; // printf("key = %i x=%i y=%i\n",key,x,y); int state; state=glutGetModifiers(); if (state & GLUT_ACTIVE_SHIFT) { switch (key) { case GLUT_KEY_LEFT : { m_liftHinge->setLimit(-M_PI/16.0f, M_PI/8.0f); m_liftHinge->enableAngularMotor(true, -0.1, maxMotorImpulse); break; } case GLUT_KEY_RIGHT : { m_liftHinge->setLimit(-M_PI/16.0f, M_PI/8.0f); m_liftHinge->enableAngularMotor(true, 0.1, maxMotorImpulse); break; } case GLUT_KEY_UP : { m_forkSlider->setLowerLinLimit(0.1f); m_forkSlider->setUpperLinLimit(3.9f); m_forkSlider->setPoweredLinMotor(true); m_forkSlider->setMaxLinMotorForce(maxMotorImpulse); m_forkSlider->setTargetLinMotorVelocity(1.0); break; } case GLUT_KEY_DOWN : { m_forkSlider->setLowerLinLimit(0.1f); m_forkSlider->setUpperLinLimit(3.9f); m_forkSlider->setPoweredLinMotor(true); m_forkSlider->setMaxLinMotorForce(maxMotorImpulse); m_forkSlider->setTargetLinMotorVelocity(-1.0); break; } default: DemoApplication::specialKeyboard(key,x,y); break; } } else { switch (key) { case GLUT_KEY_LEFT : { gVehicleSteering += steeringIncrement; if ( gVehicleSteering > steeringClamp) gVehicleSteering = steeringClamp; break; } case GLUT_KEY_RIGHT : { gVehicleSteering -= steeringIncrement; if ( gVehicleSteering < -steeringClamp) gVehicleSteering = -steeringClamp; break; } case GLUT_KEY_UP : { gEngineForce = maxEngineForce; gBreakingForce = 0.f; break; } case GLUT_KEY_DOWN : { gEngineForce = -maxEngineForce; gBreakingForce = 0.f; break; } case GLUT_KEY_F7: { btDiscreteDynamicsWorld* world = (btDiscreteDynamicsWorld*)m_dynamicsWorld; world->setLatencyMotionStateInterpolation(!world->getLatencyMotionStateInterpolation()); printf("world latencyMotionStateInterpolation = %d\n", world->getLatencyMotionStateInterpolation()); break; } case GLUT_KEY_F6: { //switch solver (needs demo restart) useMCLPSolver = !useMCLPSolver; printf("switching to useMLCPSolver = %d\n", useMCLPSolver); delete m_constraintSolver; if (useMCLPSolver) { btDantzigSolver* mlcp = new btDantzigSolver(); //btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel; btMLCPSolver* sol = new btMLCPSolver(mlcp); m_constraintSolver = sol; } else { m_constraintSolver = new btSequentialImpulseConstraintSolver(); } m_dynamicsWorld->setConstraintSolver(m_constraintSolver); //exitPhysics(); //initPhysics(); break; } case GLUT_KEY_F5: m_useDefaultCamera = !m_useDefaultCamera; break; default: DemoApplication::specialKeyboard(key,x,y); break; } } // glutPostRedisplay(); #endif } void ForkLiftDemo::lockLiftHinge(void) { btScalar hingeAngle = m_liftHinge->getHingeAngle(); btScalar lowLim = m_liftHinge->getLowerLimit(); btScalar hiLim = m_liftHinge->getUpperLimit(); m_liftHinge->enableAngularMotor(false, 0, 0); if (hingeAngle < lowLim) { // m_liftHinge->setLimit(lowLim, lowLim + LIFT_EPS); m_liftHinge->setLimit(lowLim, lowLim); } else if (hingeAngle > hiLim) { // m_liftHinge->setLimit(hiLim - LIFT_EPS, hiLim); m_liftHinge->setLimit(hiLim, hiLim); } else { // m_liftHinge->setLimit(hingeAngle - LIFT_EPS, hingeAngle + LIFT_EPS); m_liftHinge->setLimit(hingeAngle, hingeAngle); } return; } // ForkLiftDemo::lockLiftHinge() void ForkLiftDemo::lockForkSlider(void) { btScalar linDepth = m_forkSlider->getLinearPos(); btScalar lowLim = m_forkSlider->getLowerLinLimit(); btScalar hiLim = m_forkSlider->getUpperLinLimit(); m_forkSlider->setPoweredLinMotor(false); if (linDepth <= lowLim) { m_forkSlider->setLowerLinLimit(lowLim); m_forkSlider->setUpperLinLimit(lowLim); } else if (linDepth > hiLim) { m_forkSlider->setLowerLinLimit(hiLim); m_forkSlider->setUpperLinLimit(hiLim); } else { m_forkSlider->setLowerLinLimit(linDepth); m_forkSlider->setUpperLinLimit(linDepth); } return; } // ForkLiftDemo::lockForkSlider() btRigidBody* ForkLiftDemo::localCreateRigidBody(btScalar mass, const btTransform& startTransform, btCollisionShape* shape) { btAssert((!shape || shape->getShapeType() != INVALID_SHAPE_PROXYTYPE)); //rigidbody is dynamic if and only if mass is non zero, otherwise static bool isDynamic = (mass != 0.f); btVector3 localInertia(0, 0, 0); if (isDynamic) shape->calculateLocalInertia(mass, localInertia); //using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects #define USE_MOTIONSTATE 1 #ifdef USE_MOTIONSTATE btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform); btRigidBody::btRigidBodyConstructionInfo cInfo(mass, myMotionState, shape, localInertia); btRigidBody* body = new btRigidBody(cInfo); //body->setContactProcessingThreshold(m_defaultContactProcessingThreshold); #else btRigidBody* body = new btRigidBody(mass, 0, shape, localInertia); body->setWorldTransform(startTransform); #endif // m_dynamicsWorld->addRigidBody(body); return body; } CommonExampleInterface* ForkLiftCreateFunc(struct CommonExampleOptions& options) { return new ForkLiftDemo(options.m_guiHelper); }