#include "ImportURDFSetup.h" #include "BulletDynamics/ConstraintSolver/btGeneric6DofSpring2Constraint.h" //#define TEST_MULTIBODY_SERIALIZATION 1 #include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h" #include "Bullet3Common/b3FileUtils.h" #include "BulletDynamics/Featherstone/btMultiBodyJointMotor.h" #include "BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h" #include "../CommonInterfaces/CommonParameterInterface.h" #include "../../Utils/b3ResourcePath.h" #include "BulletUrdfImporter.h" #include "URDF2Bullet.h" //#include "urdf_samples.h" #include "../CommonInterfaces/CommonMultiBodyBase.h" #include "MyMultiBodyCreator.h" class ImportUrdfSetup : public CommonMultiBodyBase { char m_fileName[1024]; struct ImportUrdfInternalData* m_data; bool m_useMultiBody; btAlignedObjectArray m_nameMemory; btScalar m_grav; int m_upAxis; public: ImportUrdfSetup(struct GUIHelperInterface* helper, int option, const char* fileName); virtual ~ImportUrdfSetup(); virtual void initPhysics(); virtual void stepSimulation(float deltaTime); void setFileName(const char* urdfFileName); virtual void resetCamera() { float dist = 3.5; float pitch = -28; float yaw = -136; float targetPos[3] = {0.47, 0, -0.64}; m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]); } }; btAlignedObjectArray gFileNameArray; #define MAX_NUM_MOTORS 1024 struct ImportUrdfInternalData { ImportUrdfInternalData() : m_numMotors(0), m_mb(0) { for (int i = 0; i < MAX_NUM_MOTORS; i++) { m_jointMotors[i] = 0; m_generic6DofJointMotors[i] = 0; } } btScalar m_motorTargetVelocities[MAX_NUM_MOTORS]; btMultiBodyJointMotor* m_jointMotors[MAX_NUM_MOTORS]; btGeneric6DofSpring2Constraint* m_generic6DofJointMotors[MAX_NUM_MOTORS]; int m_numMotors; btMultiBody* m_mb; btRigidBody* m_rb; }; ImportUrdfSetup::ImportUrdfSetup(struct GUIHelperInterface* helper, int option, const char* fileName) : CommonMultiBodyBase(helper), m_grav(-10), m_upAxis(2) { m_data = new ImportUrdfInternalData; if (option == 1) { m_useMultiBody = true; } else { m_useMultiBody = false; } static int count = 0; if (fileName) { setFileName(fileName); } else { gFileNameArray.clear(); //load additional urdf file names from file FILE* f = fopen("urdf_files.txt", "r"); if (f) { int result; //warning: we don't avoid string buffer overflow in this basic example in fscanf char fileName[1024]; do { result = fscanf(f, "%s", fileName); b3Printf("urdf_files.txt entry %s", fileName); if (result == 1) { gFileNameArray.push_back(fileName); } } while (result == 1); fclose(f); } if (gFileNameArray.size() == 0) { gFileNameArray.push_back("r2d2.urdf"); } int numFileNames = gFileNameArray.size(); if (count >= numFileNames) { count = 0; } sprintf(m_fileName, "%s", gFileNameArray[count++].c_str()); } } ImportUrdfSetup::~ImportUrdfSetup() { for (int i = 0; i < m_nameMemory.size(); i++) { delete m_nameMemory[i]; } m_nameMemory.clear(); delete m_data; } void ImportUrdfSetup::setFileName(const char* urdfFileName) { memcpy(m_fileName, urdfFileName, strlen(urdfFileName) + 1); } void ImportUrdfSetup::initPhysics() { m_guiHelper->setUpAxis(m_upAxis); this->createEmptyDynamicsWorld(); //m_dynamicsWorld->getSolverInfo().m_numIterations = 100; m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld); m_dynamicsWorld->getDebugDrawer()->setDebugMode( btIDebugDraw::DBG_DrawConstraints + btIDebugDraw::DBG_DrawContactPoints + btIDebugDraw::DBG_DrawAabb); //+btIDebugDraw::DBG_DrawConstraintLimits); if (m_guiHelper->getParameterInterface()) { SliderParams slider("Gravity", &m_grav); slider.m_minVal = -10; slider.m_maxVal = 10; m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider); } int flags = 0; double globalScaling = 1; BulletURDFImporter u2b(m_guiHelper, 0, 0, globalScaling, flags); bool loadOk = u2b.loadURDF(m_fileName); #ifdef TEST_MULTIBODY_SERIALIZATION //test to serialize a multibody to disk or shared memory, with base, link and joint names btSerializer* s = new btDefaultSerializer; #endif //TEST_MULTIBODY_SERIALIZATION if (loadOk) { //printTree(u2b,u2b.getRootLinkIndex()); //u2b.printTree(); btTransform identityTrans; identityTrans.setIdentity(); { //todo: move these internal API called inside the 'ConvertURDF2Bullet' call, hidden from the user //int rootLinkIndex = u2b.getRootLinkIndex(); //b3Printf("urdf root link index = %d\n",rootLinkIndex); MyMultiBodyCreator creation(m_guiHelper); ConvertURDF2Bullet(u2b, creation, identityTrans, m_dynamicsWorld, m_useMultiBody, u2b.getPathPrefix()); m_data->m_rb = creation.getRigidBody(); m_data->m_mb = creation.getBulletMultiBody(); btMultiBody* mb = m_data->m_mb; for (int i = 0; i < u2b.getNumAllocatedCollisionShapes(); i++) { m_collisionShapes.push_back(u2b.getAllocatedCollisionShape(i)); } if (m_useMultiBody && mb) { std::string* name = new std::string(u2b.getLinkName(u2b.getRootLinkIndex())); m_nameMemory.push_back(name); #ifdef TEST_MULTIBODY_SERIALIZATION s->registerNameForPointer(name->c_str(), name->c_str()); #endif //TEST_MULTIBODY_SERIALIZATION mb->setBaseName(name->c_str()); //create motors for each btMultiBody joint int numLinks = mb->getNumLinks(); for (int i = 0; i < numLinks; i++) { int mbLinkIndex = i; int urdfLinkIndex = creation.m_mb2urdfLink[mbLinkIndex]; std::string* jointName = new std::string(u2b.getJointName(urdfLinkIndex)); std::string* linkName = new std::string(u2b.getLinkName(urdfLinkIndex).c_str()); #ifdef TEST_MULTIBODY_SERIALIZATION s->registerNameForPointer(jointName->c_str(), jointName->c_str()); s->registerNameForPointer(linkName->c_str(), linkName->c_str()); #endif //TEST_MULTIBODY_SERIALIZATION m_nameMemory.push_back(jointName); m_nameMemory.push_back(linkName); mb->getLink(i).m_linkName = linkName->c_str(); mb->getLink(i).m_jointName = jointName->c_str(); if (mb->getLink(mbLinkIndex).m_jointType == btMultibodyLink::eRevolute || mb->getLink(mbLinkIndex).m_jointType == btMultibodyLink::ePrismatic) { if (m_data->m_numMotors < MAX_NUM_MOTORS) { char motorName[1024]; sprintf(motorName, "%s q'", jointName->c_str()); btScalar* motorVel = &m_data->m_motorTargetVelocities[m_data->m_numMotors]; *motorVel = 0.f; SliderParams slider(motorName, motorVel); slider.m_minVal = -4; slider.m_maxVal = 4; m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider); float maxMotorImpulse = 10.1f; btMultiBodyJointMotor* motor = new btMultiBodyJointMotor(mb, mbLinkIndex, 0, 0, maxMotorImpulse); //motor->setMaxAppliedImpulse(0); m_data->m_jointMotors[m_data->m_numMotors] = motor; m_dynamicsWorld->addMultiBodyConstraint(motor); m_data->m_numMotors++; } } } } else { if (1) { //create motors for each generic joint int num6Dof = creation.getNum6DofConstraints(); for (int i = 0; i < num6Dof; i++) { btGeneric6DofSpring2Constraint* c = creation.get6DofConstraint(i); if (c->getUserConstraintPtr()) { GenericConstraintUserInfo* jointInfo = (GenericConstraintUserInfo*)c->getUserConstraintPtr(); if ((jointInfo->m_urdfJointType == URDFRevoluteJoint) || (jointInfo->m_urdfJointType == URDFPrismaticJoint) || (jointInfo->m_urdfJointType == URDFContinuousJoint)) { int urdfLinkIndex = jointInfo->m_urdfIndex; std::string jointName = u2b.getJointName(urdfLinkIndex); char motorName[1024]; sprintf(motorName, "%s q'", jointName.c_str()); btScalar* motorVel = &m_data->m_motorTargetVelocities[m_data->m_numMotors]; *motorVel = 0.f; SliderParams slider(motorName, motorVel); slider.m_minVal = -4; slider.m_maxVal = 4; m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider); m_data->m_generic6DofJointMotors[m_data->m_numMotors] = c; bool motorOn = true; c->enableMotor(jointInfo->m_jointAxisIndex, motorOn); c->setMaxMotorForce(jointInfo->m_jointAxisIndex, 10000); c->setTargetVelocity(jointInfo->m_jointAxisIndex, 0); m_data->m_numMotors++; } } } } } } //the btMultiBody support is work-in-progress :-) for (int i = 0; i < m_dynamicsWorld->getNumMultiBodyConstraints(); i++) { m_dynamicsWorld->getMultiBodyConstraint(i)->finalizeMultiDof(); } bool createGround = true; if (createGround) { btVector3 groundHalfExtents(20, 20, 20); groundHalfExtents[m_upAxis] = 1.f; btBoxShape* box = new btBoxShape(groundHalfExtents); m_collisionShapes.push_back(box); box->initializePolyhedralFeatures(); m_guiHelper->createCollisionShapeGraphicsObject(box); btTransform start; start.setIdentity(); btVector3 groundOrigin(0, 0, 0); groundOrigin[m_upAxis] = -2.5; start.setOrigin(groundOrigin); btRigidBody* body = createRigidBody(0, start, box); //m_dynamicsWorld->removeRigidBody(body); // m_dynamicsWorld->addRigidBody(body,2,1); btVector3 color(0.5, 0.5, 0.5); m_guiHelper->createRigidBodyGraphicsObject(body, color); } } #ifdef TEST_MULTIBODY_SERIALIZATION m_dynamicsWorld->serialize(s); b3ResourcePath p; char resourcePath[1024]; if (p.findResourcePath("r2d2_multibody.bullet", resourcePath, 1024)) { FILE* f = fopen(resourcePath, "wb"); fwrite(s->getBufferPointer(), s->getCurrentBufferSize(), 1, f); fclose(f); } #endif //TEST_MULTIBODY_SERIALIZATION } void ImportUrdfSetup::stepSimulation(float deltaTime) { if (m_dynamicsWorld) { btVector3 gravity(0, 0, 0); gravity[m_upAxis] = m_grav; m_dynamicsWorld->setGravity(gravity); for (int i = 0; i < m_data->m_numMotors; i++) { if (m_data->m_jointMotors[i]) { m_data->m_jointMotors[i]->setVelocityTarget(m_data->m_motorTargetVelocities[i]); } if (m_data->m_generic6DofJointMotors[i]) { GenericConstraintUserInfo* jointInfo = (GenericConstraintUserInfo*)m_data->m_generic6DofJointMotors[i]->getUserConstraintPtr(); m_data->m_generic6DofJointMotors[i]->setTargetVelocity(jointInfo->m_jointAxisIndex, m_data->m_motorTargetVelocities[i]); //jointInfo-> } } //the maximal coordinates/iterative MLCP solver requires a smallish timestep to converge m_dynamicsWorld->stepSimulation(deltaTime, 10, 1. / 240.); } } class CommonExampleInterface* ImportURDFCreateFunc(struct CommonExampleOptions& options) { return new ImportUrdfSetup(options.m_guiHelper, options.m_option, options.m_fileName); }