#include "InverseKinematicsExample.h" #include "../CommonInterfaces/CommonGraphicsAppInterface.h" #include "Bullet3Common/b3Quaternion.h" #include "Bullet3Common/b3Transform.h" #include "Bullet3Common/b3AlignedObjectArray.h" #include "../CommonInterfaces/CommonRenderInterface.h" #include "../CommonInterfaces/CommonExampleInterface.h" #include "../CommonInterfaces/CommonGUIHelperInterface.h" #include "BussIK/Node.h" #include "BussIK/Tree.h" #include "BussIK/Jacobian.h" #include "BussIK/VectorRn.h" #define RADIAN(X) ((X)*RadiansToDegrees) #define MAX_NUM_NODE 1000 #define MAX_NUM_THETA 1000 #define MAX_NUM_EFFECT 100 double T = 0; VectorR3 targetaa[MAX_NUM_EFFECT]; // Make slowdown factor larger to make the simulation take larger, less frequent steps // Make the constant factor in Tstep larger to make time pass more quickly //const int SlowdownFactor = 40; const int SlowdownFactor = 0; // Make higher to take larger steps less frequently const int SleepsPerStep = SlowdownFactor; int SleepCounter = 0; //const double Tstep = 0.0005*(double)SlowdownFactor; // Time step int AxesList; /* list to hold the axes */ int AxesOn; /* ON or OFF */ float Scale, Scale2; /* scaling factors */ int JointLimitsOn; int RestPositionOn; int UseJacobianTargets1; int numIteration = 1; double error = 0.0; double errorDLS = 0.0; double errorSDLS = 0.0; double sumError = 0.0; double sumErrorDLS = 0.0; double sumErrorSDLS = 0.0; #ifdef _DYNAMIC bool initMaxDist = true; extern double Excess[]; extern double dsnorm[]; #endif void Reset(Tree& tree, Jacobian* m_ikJacobian) { AxesOn = false; Scale = 1.0; Scale2 = 0.0; /* because add 1. to it in Display() */ JointLimitsOn = true; RestPositionOn = false; UseJacobianTargets1 = false; tree.Init(); tree.Compute(); m_ikJacobian->Reset(); } // Update target positions void UpdateTargets(double T, Tree& treeY) { targetaa[0].Set(2.0f + 1.5*sin(3 * T) * 2, -0.5 + 1.0f + 0.2*sin(7 * T) * 2, 0.3f + 0.7*sin(5 * T) * 2); targetaa[1].Set(0.5f + 0.4*sin(4 * T) * 2, -0.5 + 0.9f + 0.3*sin(4 * T) * 2, -0.2f + 1.0*sin(3 * T) * 2); targetaa[2].Set(-0.5f + 0.8*sin(6 * T) * 2, -0.5 + 1.1f + 0.2*sin(7 * T) * 2, 0.3f + 0.5*sin(8 * T) * 2); targetaa[3].Set(-1.6f + 0.8*sin(4 * T) * 2, -0.5 + 0.8f + 0.3*sin(4 * T) * 2, -0.2f + 0.3*sin(3 * T) * 2); } // Does a single update (on one kind of m_ikTree) void DoUpdateStep(double Tstep, Tree& treeY, Jacobian* jacob, int ikMethod) { B3_PROFILE("IK_DoUpdateStep"); if (SleepCounter == 0) { T += Tstep*0.1; UpdateTargets(T, treeY); } if (UseJacobianTargets1) { jacob->SetJtargetActive(); } else { jacob->SetJendActive(); } jacob->ComputeJacobian(targetaa); // Set up Jacobian and deltaS vectors MatrixRmn AugMat; // Calculate the change in theta values switch (ikMethod) { case IK_JACOB_TRANS: jacob->CalcDeltaThetasTranspose(); // Jacobian transpose method break; case IK_DLS: jacob->CalcDeltaThetasDLS(AugMat); // Damped least squares method break; case IK_DLS_SVD: jacob->CalcDeltaThetasDLSwithSVD(); break; case IK_PURE_PSEUDO: jacob->CalcDeltaThetasPseudoinverse(); // Pure pseudoinverse method break; case IK_SDLS: jacob->CalcDeltaThetasSDLS(); // Selectively damped least squares method break; default: jacob->ZeroDeltaThetas(); break; } if (SleepCounter == 0) { jacob->UpdateThetas(); // Apply the change in the theta values jacob->UpdatedSClampValue(targetaa); SleepCounter = SleepsPerStep; } else { SleepCounter--; } } ///quick demo showing the right-handed coordinate system and positive rotations around each axis class InverseKinematicsExample : public CommonExampleInterface { CommonGraphicsApp* m_app; int m_ikMethod; Tree m_ikTree; b3AlignedObjectArray m_ikNodes; Jacobian* m_ikJacobian; b3AlignedObjectArray m_movingInstances; b3AlignedObjectArray m_targetInstances; enum { numCubesX = 20, numCubesY = 20 }; public: InverseKinematicsExample(CommonGraphicsApp* app, int option) : m_app(app), m_ikMethod(option) { m_app->setUpAxis(1); { b3Vector3 extents = b3MakeVector3(100, 100, 100); extents[m_app->getUpAxis()] = 1; int xres = 20; int yres = 20; b3Vector4 color0 = b3MakeVector4(0.4, 0.4, 0.4, 1); b3Vector4 color1 = b3MakeVector4(0.6, 0.6, 0.6, 1); //m_app->registerGrid(xres, yres, color0, color1); } ///create some graphics proxy for the tracking target ///the endeffector tries to track it using Inverse Kinematics { int sphereId = m_app->registerGraphicsUnitSphereShape(SPHERE_LOD_MEDIUM); b3Vector3 pos = b3MakeVector3(1, 1, 1); pos[app->getUpAxis()] = 1; b3Quaternion orn(0, 0, 0, 1); b3Vector4 color = b3MakeVector4(1., 0.3, 0.3, 1); b3Vector3 scaling = b3MakeVector3(.1, .1, .1); m_targetInstances.push_back(m_app->m_renderer->registerGraphicsInstance(sphereId, pos, orn, color, scaling)); m_targetInstances.push_back(m_app->m_renderer->registerGraphicsInstance(sphereId, pos, orn, color, scaling)); m_targetInstances.push_back(m_app->m_renderer->registerGraphicsInstance(sphereId, pos, orn, color, scaling)); m_targetInstances.push_back(m_app->m_renderer->registerGraphicsInstance(sphereId, pos, orn, color, scaling)); } m_app->m_renderer->writeTransforms(); } virtual ~InverseKinematicsExample() { } virtual void physicsDebugDraw(int debugDrawMode) { } virtual void initPhysics() { BuildKukaIIWAShape(); m_ikJacobian = new Jacobian(&m_ikTree); Reset(m_ikTree, m_ikJacobian); } virtual void exitPhysics() { delete m_ikJacobian; m_ikJacobian = 0; } void BuildKukaIIWAShape(); void getLocalTransform(const Node* node, b3Transform& act) { b3Vector3 axis = b3MakeVector3(node->v.x, node->v.y, node->v.z); b3Quaternion rot(0, 0, 0, 1); if (axis.length()) { rot = b3Quaternion(axis, node->theta); } act.setIdentity(); act.setRotation(rot); act.setOrigin(b3MakeVector3(node->r.x, node->r.y, node->r.z)); } void MyDrawTree(Node* node, const b3Transform& tr, const b3Transform& parentTr) { int lineWidth = 2; if (node != 0) { b3Vector3 pos = b3MakeVector3(tr.getOrigin().x, tr.getOrigin().y, tr.getOrigin().z); b3Vector3 color1 = b3MakeVector3(0, 1, 0); int pointSize = 10; m_app->m_renderer->drawPoint(pos, color1, pointSize); m_app->m_renderer->drawLine(pos, pos + 0.05 * tr.getBasis().getColumn(0), b3MakeVector3(1, 0, 0), lineWidth); m_app->m_renderer->drawLine(pos, pos + 0.05 * tr.getBasis().getColumn(1), b3MakeVector3(0, 1, 0), lineWidth); m_app->m_renderer->drawLine(pos, pos + 0.05 * tr.getBasis().getColumn(2), b3MakeVector3(0, 0, 1), lineWidth); b3Vector3 axisLocal = b3MakeVector3(node->v.x, node->v.y, node->v.z); b3Vector3 axisWorld = tr.getBasis() * axisLocal; m_app->m_renderer->drawLine(pos, pos + 0.1 * axisWorld, b3MakeVector3(.2, 0.2, 0.7), 5); if (node->right) { b3Transform act; getLocalTransform(node->right, act); b3Transform trr = tr * act; b3Transform ptrr = parentTr * act; b3Vector3 lineColor = b3MakeVector3(0, 1, 0); m_app->m_renderer->drawLine(tr.getOrigin(), ptrr.getOrigin(), lineColor, lineWidth); MyDrawTree(node->right, ptrr, parentTr); // Draw right siblings recursively } //node->DrawNode(node == root); // Recursively draw node and update ModelView matrix if (node->left) { b3Transform act; getLocalTransform(node->left, act); b3Vector3 lineColor = b3MakeVector3(1, 0, 0); b3Transform trl = tr * act; m_app->m_renderer->drawLine(tr.getOrigin(), trl.getOrigin(), lineColor, lineWidth); MyDrawTree(node->left, trl, tr); // Draw m_ikTree of children recursively } } } virtual void stepSimulation(float deltaTime) { DoUpdateStep(deltaTime, m_ikTree, m_ikJacobian, m_ikMethod); } virtual void renderScene() { b3Transform act; getLocalTransform(m_ikTree.GetRoot(), act); MyDrawTree(m_ikTree.GetRoot(), act, b3Transform::getIdentity()); for (int i = 0; i < m_targetInstances.size(); i++) { b3Vector3 pos = b3MakeVector3(targetaa[i].x, targetaa[i].y, targetaa[i].z); b3Quaternion orn(0, 0, 0, 1); m_app->m_renderer->writeSingleInstanceTransformToCPU(pos, orn, m_targetInstances[i]); } m_app->m_renderer->writeTransforms(); m_app->m_renderer->renderScene(); } virtual void physicsDebugDraw() { } virtual bool mouseMoveCallback(float x, float y) { return false; } virtual bool mouseButtonCallback(int button, int state, float x, float y) { return false; } virtual bool keyboardCallback(int key, int state) { return false; } virtual void resetCamera() { float dist = 1.3; float pitch = -13; float yaw = 120; float targetPos[3] = {-0.35, 0.14, 0.25}; if (m_app->m_renderer && m_app->m_renderer->getActiveCamera()) { m_app->m_renderer->getActiveCamera()->setCameraDistance(dist); m_app->m_renderer->getActiveCamera()->setCameraPitch(pitch); m_app->m_renderer->getActiveCamera()->setCameraYaw(yaw); m_app->m_renderer->getActiveCamera()->setCameraTargetPosition(targetPos[0], targetPos[1], targetPos[2]); } } }; void InverseKinematicsExample::BuildKukaIIWAShape() { m_ikNodes.resize(29); const VectorR3& unitx = VectorR3::UnitX; const VectorR3& unity = VectorR3::UnitY; const VectorR3& unitz = VectorR3::UnitZ; const VectorR3 unit1(sqrt(14.0) / 8.0, 1.0 / 8.0, 7.0 / 8.0); const VectorR3& zero = VectorR3::Zero; VectorR3 p0(0.0f, -1.5f, 0.0f); VectorR3 p1(0.0f, -1.0f, 0.0f); VectorR3 p2(0.0f, -0.5f, 0.0f); VectorR3 p3(0.5f*Root2Inv, -0.5 + 0.5*Root2Inv, 0.0f); VectorR3 p4(0.5f*Root2Inv + 0.5f*HalfRoot3, -0.5 + 0.5*Root2Inv + 0.5f*0.5, 0.0f); VectorR3 p5(0.5f*Root2Inv + 1.0f*HalfRoot3, -0.5 + 0.5*Root2Inv + 1.0f*0.5, 0.0f); VectorR3 p6(0.5f*Root2Inv + 1.5f*HalfRoot3, -0.5 + 0.5*Root2Inv + 1.5f*0.5, 0.0f); VectorR3 p7(0.5f*Root2Inv + 0.5f*HalfRoot3, -0.5 + 0.5*Root2Inv + 0.5f*HalfRoot3, 0.0f); VectorR3 p8(0.5f*Root2Inv + 1.0f*HalfRoot3, -0.5 + 0.5*Root2Inv + 1.0f*HalfRoot3, 0.0f); VectorR3 p9(0.5f*Root2Inv + 1.5f*HalfRoot3, -0.5 + 0.5*Root2Inv + 1.5f*HalfRoot3, 0.0f); VectorR3 p10(-0.5f*Root2Inv, -0.5 + 0.5*Root2Inv, 0.0f); VectorR3 p11(-0.5f*Root2Inv - 0.5f*HalfRoot3, -0.5 + 0.5*Root2Inv + 0.5f*HalfRoot3, 0.0f); VectorR3 p12(-0.5f*Root2Inv - 1.0f*HalfRoot3, -0.5 + 0.5*Root2Inv + 1.0f*HalfRoot3, 0.0f); VectorR3 p13(-0.5f*Root2Inv - 1.5f*HalfRoot3, -0.5 + 0.5*Root2Inv + 1.5f*HalfRoot3, 0.0f); VectorR3 p14(-0.5f*Root2Inv - 0.5f*HalfRoot3, -0.5 + 0.5*Root2Inv + 0.5f*0.5, 0.0f); VectorR3 p15(-0.5f*Root2Inv - 1.0f*HalfRoot3, -0.5 + 0.5*Root2Inv + 1.0f*0.5, 0.0f); VectorR3 p16(-0.5f*Root2Inv - 1.5f*HalfRoot3, -0.5 + 0.5*Root2Inv + 1.5f*0.5, 0.0f); m_ikNodes[0] = new Node(p0, unit1, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertRoot(m_ikNodes[0]); m_ikNodes[1] = new Node(p1, unitx, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertLeftChild(m_ikNodes[0], m_ikNodes[1]); m_ikNodes[2] = new Node(p1, unitz, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertLeftChild(m_ikNodes[1], m_ikNodes[2]); m_ikNodes[3] = new Node(p2, unitz, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertLeftChild(m_ikNodes[2], m_ikNodes[3]); m_ikNodes[4] = new Node(p2, unitz, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertRightSibling(m_ikNodes[3], m_ikNodes[4]); m_ikNodes[5] = new Node(p3, unity, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertLeftChild(m_ikNodes[3], m_ikNodes[5]); m_ikNodes[6] = new Node(p3, unity, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertRightSibling(m_ikNodes[5], m_ikNodes[6]); m_ikNodes[7] = new Node(p3, unitx, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertLeftChild(m_ikNodes[5], m_ikNodes[7]); m_ikNodes[8] = new Node(p4, unitz, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertLeftChild(m_ikNodes[7], m_ikNodes[8]); m_ikNodes[9] = new Node(p5, unitx, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertLeftChild(m_ikNodes[8], m_ikNodes[9]); m_ikNodes[10] = new Node(p5, unity, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertLeftChild(m_ikNodes[9], m_ikNodes[10]); m_ikNodes[11] = new Node(p6, zero, 0.08, EFFECTOR); m_ikTree.InsertLeftChild(m_ikNodes[10], m_ikNodes[11]); m_ikNodes[12] = new Node(p3, unitx, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertLeftChild(m_ikNodes[6], m_ikNodes[12]); m_ikNodes[13] = new Node(p7, unitz, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertLeftChild(m_ikNodes[12], m_ikNodes[13]); m_ikNodes[14] = new Node(p8, unitx, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertLeftChild(m_ikNodes[13], m_ikNodes[14]); m_ikNodes[15] = new Node(p8, unity, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertLeftChild(m_ikNodes[14], m_ikNodes[15]); m_ikNodes[16] = new Node(p9, zero, 0.08, EFFECTOR); m_ikTree.InsertLeftChild(m_ikNodes[15], m_ikNodes[16]); m_ikNodes[17] = new Node(p10, unity, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertLeftChild(m_ikNodes[4], m_ikNodes[17]); m_ikNodes[18] = new Node(p10, unitx, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertLeftChild(m_ikNodes[17], m_ikNodes[18]); m_ikNodes[19] = new Node(p10, unity, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertRightSibling(m_ikNodes[17], m_ikNodes[19]); m_ikNodes[20] = new Node(p11, unitz, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertLeftChild(m_ikNodes[18], m_ikNodes[20]); m_ikNodes[21] = new Node(p12, unitx, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertLeftChild(m_ikNodes[20], m_ikNodes[21]); m_ikNodes[22] = new Node(p12, unity, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertLeftChild(m_ikNodes[21], m_ikNodes[22]); m_ikNodes[23] = new Node(p13, zero, 0.08, EFFECTOR); m_ikTree.InsertLeftChild(m_ikNodes[22], m_ikNodes[23]); m_ikNodes[24] = new Node(p10, unitx, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertLeftChild(m_ikNodes[19], m_ikNodes[24]); m_ikNodes[25] = new Node(p14, unitz, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertLeftChild(m_ikNodes[24], m_ikNodes[25]); m_ikNodes[26] = new Node(p15, unitx, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertLeftChild(m_ikNodes[25], m_ikNodes[26]); m_ikNodes[27] = new Node(p15, unity, 0.08, JOINT, RADIAN(-180.), RADIAN(180.), RADIAN(30.)); m_ikTree.InsertLeftChild(m_ikNodes[26], m_ikNodes[27]); m_ikNodes[28] = new Node(p16, zero, 0.08, EFFECTOR); m_ikTree.InsertLeftChild(m_ikNodes[27], m_ikNodes[28]); } class CommonExampleInterface* InverseKinematicsExampleCreateFunc(struct CommonExampleOptions& options) { return new InverseKinematicsExample(options.m_guiHelper->getAppInterface(), options.m_option); }