//test addJointTorque #include "TestJointTorqueSetup.h" #include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h" #include "BulletDynamics/Featherstone/btMultiBodyJointFeedback.h" #include "../CommonInterfaces/CommonMultiBodyBase.h" #include "../Utils/b3ResourcePath.h" static btScalar radius(0.2); struct TestJointTorqueSetup : public CommonMultiBodyBase { btMultiBody* m_multiBody; btAlignedObjectArray m_jointFeedbacks; bool m_once; public: TestJointTorqueSetup(struct GUIHelperInterface* helper); virtual ~TestJointTorqueSetup(); virtual void initPhysics(); virtual void stepSimulation(float deltaTime); virtual void resetCamera() { float dist = 5; float pitch = -21; float yaw = 270; float targetPos[3] = {-1.34, 3.4, -0.44}; m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]); } }; TestJointTorqueSetup::TestJointTorqueSetup(struct GUIHelperInterface* helper) : CommonMultiBodyBase(helper), m_once(true) { } TestJointTorqueSetup::~TestJointTorqueSetup() { } void TestJointTorqueSetup::initPhysics() { int upAxis = 1; m_guiHelper->setUpAxis(upAxis); btVector4 colors[4] = { btVector4(1, 0, 0, 1), btVector4(0, 1, 0, 1), btVector4(0, 1, 1, 1), btVector4(1, 1, 0, 1), }; int curColor = 0; this->createEmptyDynamicsWorld(); m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld); m_dynamicsWorld->getDebugDrawer()->setDebugMode( //btIDebugDraw::DBG_DrawConstraints +btIDebugDraw::DBG_DrawWireframe + btIDebugDraw::DBG_DrawContactPoints + btIDebugDraw::DBG_DrawAabb); //+btIDebugDraw::DBG_DrawConstraintLimits); m_dynamicsWorld->getSolverInfo().m_jointFeedbackInWorldSpace = true; m_dynamicsWorld->getSolverInfo().m_jointFeedbackInJointFrame = true; //create a static ground object if (1) { btVector3 groundHalfExtents(1, 1, 0.2); groundHalfExtents[upAxis] = 1.f; btBoxShape* box = new btBoxShape(groundHalfExtents); box->initializePolyhedralFeatures(); m_guiHelper->createCollisionShapeGraphicsObject(box); btTransform start; start.setIdentity(); btVector3 groundOrigin(-0.4f, 3.f, 0.f); groundOrigin[upAxis] -= .5; groundOrigin[2] -= 0.6; start.setOrigin(groundOrigin); btQuaternion groundOrn(btVector3(0, 1, 0), 0.25 * SIMD_PI); // start.setRotation(groundOrn); btRigidBody* body = createRigidBody(0, start, box); body->setFriction(0); btVector4 color = colors[curColor]; curColor++; curColor &= 3; m_guiHelper->createRigidBodyGraphicsObject(body, color); } { bool floating = false; bool damping = false; bool gyro = false; int numLinks = 2; bool spherical = false; //set it ot false -to use 1DoF hinges instead of 3DoF sphericals bool canSleep = false; bool selfCollide = false; btVector3 linkHalfExtents(0.05, 0.37, 0.1); btVector3 baseHalfExtents(0.05, 0.37, 0.1); btVector3 basePosition = btVector3(-0.4f, 3.f, 0.f); //mbC->forceMultiDof(); //if !spherical, you can comment this line to check the 1DoF algorithm //init the base btVector3 baseInertiaDiag(0.f, 0.f, 0.f); float baseMass = 1.f; if (baseMass) { //btCollisionShape *shape = new btSphereShape(baseHalfExtents[0]);// btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2])); btCollisionShape* shape = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2])); shape->calculateLocalInertia(baseMass, baseInertiaDiag); delete shape; } btMultiBody* pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep); m_multiBody = pMultiBody; btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f); // baseOriQuat.setEulerZYX(-.25*SIMD_PI,0,-1.75*SIMD_PI); pMultiBody->setBasePos(basePosition); pMultiBody->setWorldToBaseRot(baseOriQuat); btVector3 vel(0, 0, 0); // pMultiBody->setBaseVel(vel); //init the links btVector3 hingeJointAxis(1, 0, 0); //y-axis assumed up btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0); //par body's COM to cur body's COM offset btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0); //cur body's COM to cur body's PIV offset btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset ////// btScalar q0 = 0.f * SIMD_PI / 180.f; btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0); quat0.normalize(); ///// for (int i = 0; i < numLinks; ++i) { float linkMass = 1.f; //if (i==3 || i==2) // linkMass= 1000; btVector3 linkInertiaDiag(0.f, 0.f, 0.f); btCollisionShape* shape = 0; if (i == 0) { shape = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2])); // } else { shape = new btSphereShape(radius); } shape->calculateLocalInertia(linkMass, linkInertiaDiag); delete shape; if (!spherical) { //pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, false); if (i == 0) { pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, false); } else { btVector3 parentComToCurrentCom(0, -radius * 2.f, 0); //par body's COM to cur body's COM offset btVector3 currentPivotToCurrentCom(0, -radius, 0); //cur body's COM to cur body's PIV offset btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset pMultiBody->setupFixed(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom); } //pMultiBody->setupFixed(i,linkMass,linkInertiaDiag,i-1,btQuaternion(0,0,0,1),parentComToCurrentPivot,currentPivotToCurrentCom,false); } else { //pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false); pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, false); } } pMultiBody->finalizeMultiDof(); //for (int i=pMultiBody->getNumLinks()-1;i>=0;i--)// for (int i = 0; i < pMultiBody->getNumLinks(); i++) { btMultiBodyJointFeedback* fb = new btMultiBodyJointFeedback(); pMultiBody->getLink(i).m_jointFeedback = fb; m_jointFeedbacks.push_back(fb); //break; } btMultiBodyDynamicsWorld* world = m_dynamicsWorld; /// world->addMultiBody(pMultiBody); btMultiBody* mbC = pMultiBody; mbC->setCanSleep(canSleep); mbC->setHasSelfCollision(selfCollide); mbC->setUseGyroTerm(gyro); // if (!damping) { mbC->setLinearDamping(0.f); mbC->setAngularDamping(0.f); } else { mbC->setLinearDamping(0.1f); mbC->setAngularDamping(0.9f); } // m_dynamicsWorld->setGravity(btVector3(0, 0, -10)); ////////////////////////////////////////////// if (0) //numLinks > 0) { btScalar q0 = 45.f * SIMD_PI / 180.f; if (!spherical) { mbC->setJointPosMultiDof(0, &q0); } else { btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0); quat0.normalize(); mbC->setJointPosMultiDof(0, quat0); } } /// btAlignedObjectArray world_to_local; world_to_local.resize(pMultiBody->getNumLinks() + 1); btAlignedObjectArray local_origin; local_origin.resize(pMultiBody->getNumLinks() + 1); world_to_local[0] = pMultiBody->getWorldToBaseRot(); local_origin[0] = pMultiBody->getBasePos(); // double friction = 1; { // float pos[4]={local_origin[0].x(),local_origin[0].y(),local_origin[0].z(),1}; // btScalar quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()}; if (1) { btCollisionShape* shape = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2])); //new btSphereShape(baseHalfExtents[0]); m_guiHelper->createCollisionShapeGraphicsObject(shape); btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, -1); col->setCollisionShape(shape); btTransform tr; tr.setIdentity(); //if we don't set the initial pose of the btCollisionObject, the simulator will do this //when syncing the btMultiBody link transforms to the btMultiBodyLinkCollider tr.setOrigin(local_origin[0]); btQuaternion orn(btVector3(0, 0, 1), 0.25 * 3.1415926538); tr.setRotation(orn); col->setWorldTransform(tr); bool isDynamic = (baseMass > 0 && floating); int collisionFilterGroup = isDynamic ? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter); int collisionFilterMask = isDynamic ? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter); world->addCollisionObject(col, collisionFilterGroup, collisionFilterMask); //, 2,1+2); btVector3 color(0.0, 0.0, 0.5); m_guiHelper->createCollisionObjectGraphicsObject(col, color); // col->setFriction(friction); pMultiBody->setBaseCollider(col); } } for (int i = 0; i < pMultiBody->getNumLinks(); ++i) { const int parent = pMultiBody->getParent(i); world_to_local[i + 1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent + 1]; local_origin[i + 1] = local_origin[parent + 1] + (quatRotate(world_to_local[i + 1].inverse(), pMultiBody->getRVector(i))); } for (int i = 0; i < pMultiBody->getNumLinks(); ++i) { btVector3 posr = local_origin[i + 1]; // float pos[4]={posr.x(),posr.y(),posr.z(),1}; btScalar quat[4] = {-world_to_local[i + 1].x(), -world_to_local[i + 1].y(), -world_to_local[i + 1].z(), world_to_local[i + 1].w()}; btCollisionShape* shape = 0; if (i == 0) { shape = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2])); //btSphereShape(linkHalfExtents[0]); } else { shape = new btSphereShape(radius); } m_guiHelper->createCollisionShapeGraphicsObject(shape); btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i); col->setCollisionShape(shape); btTransform tr; tr.setIdentity(); tr.setOrigin(posr); tr.setRotation(btQuaternion(quat[0], quat[1], quat[2], quat[3])); col->setWorldTransform(tr); // col->setFriction(friction); bool isDynamic = 1; //(linkMass > 0); int collisionFilterGroup = isDynamic ? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter); int collisionFilterMask = isDynamic ? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter); //if (i==0||i>numLinks-2) { world->addCollisionObject(col, collisionFilterGroup, collisionFilterMask); //,2,1+2); btVector4 color = colors[curColor]; curColor++; curColor &= 3; m_guiHelper->createCollisionObjectGraphicsObject(col, color); pMultiBody->getLink(i).m_collider = col; } } } btSerializer* s = new btDefaultSerializer; m_dynamicsWorld->serialize(s); char resourcePath[1024]; if (b3ResourcePath::findResourcePath("multibody.bullet", resourcePath, 1024,0)) { FILE* f = fopen(resourcePath, "wb"); fwrite(s->getBufferPointer(), s->getCurrentBufferSize(), 1, f); fclose(f); } } void TestJointTorqueSetup::stepSimulation(float deltaTime) { //m_multiBody->addLinkForce(0,btVector3(100,100,100)); if (0) //m_once) { m_once = false; m_multiBody->addJointTorque(0, 10.0); btScalar torque = m_multiBody->getJointTorque(0); b3Printf("t = %f,%f,%f\n", torque, torque, torque); //[0],torque[1],torque[2]); } m_dynamicsWorld->stepSimulation(1. / 240, 0); static int count = 0; if ((count & 0x0f) == 0) { for (int i = 0; i < m_jointFeedbacks.size(); i++) { b3Printf("F_reaction[%i] linear:%f,%f,%f, angular:%f,%f,%f", i, m_jointFeedbacks[i]->m_reactionForces.m_topVec[0], m_jointFeedbacks[i]->m_reactionForces.m_topVec[1], m_jointFeedbacks[i]->m_reactionForces.m_topVec[2], m_jointFeedbacks[i]->m_reactionForces.m_bottomVec[0], m_jointFeedbacks[i]->m_reactionForces.m_bottomVec[1], m_jointFeedbacks[i]->m_reactionForces.m_bottomVec[2] ); } } count++; /* b3Printf("base angvel = %f,%f,%f",m_multiBody->getBaseOmega()[0], m_multiBody->getBaseOmega()[1], m_multiBody->getBaseOmega()[2] ); */ // btScalar jointVel =m_multiBody->getJointVel(0); // b3Printf("child angvel = %f",jointVel); } class CommonExampleInterface* TestJointTorqueCreateFunc(struct CommonExampleOptions& options) { return new TestJointTorqueSetup(options.m_guiHelper); }