#include "ConcaveScene.h" #include "GpuRigidBodyDemo.h" #include "OpenGLWindow/ShapeData.h" #include "OpenGLWindow/GLInstancingRenderer.h" #include "Bullet3Common/b3Quaternion.h" #include "OpenGLWindow/b3gWindowInterface.h" #include "Bullet3OpenCL/BroadphaseCollision/b3GpuSapBroadphase.h" #include "../GpuDemoInternalData.h" #include "Bullet3OpenCL/Initialize/b3OpenCLUtils.h" #include "OpenGLWindow/OpenGLInclude.h" #include "OpenGLWindow/GLInstanceRendererInternalData.h" #include "Bullet3OpenCL/ParallelPrimitives/b3LauncherCL.h" #include "Bullet3OpenCL/RigidBody/b3GpuRigidBodyPipeline.h" #include "Bullet3OpenCL/RigidBody/b3GpuNarrowPhase.h" #include "Bullet3Collision/NarrowPhaseCollision/b3Config.h" #include "GpuRigidBodyDemoInternalData.h" #include "../../Wavefront/tiny_obj_loader.h" #include "Bullet3Common/b3Transform.h" #include "Bullet3Collision/NarrowPhaseCollision/b3ConvexUtility.h" #include "Bullet3AppSupport/gwenUserInterface.h" #include "OpenGLWindow/GLInstanceGraphicsShape.h" #define CONCAVE_GAPX 14 #define CONCAVE_GAPY 5 #define CONCAVE_GAPZ 14 GLInstanceGraphicsShape* createGraphicsShapeFromWavefrontObj(std::vector& shapes) { b3AlignedObjectArray* vertices = new b3AlignedObjectArray; { // int numVertices = obj->vertexCount; // int numIndices = 0; b3AlignedObjectArray* indicesPtr = new b3AlignedObjectArray; for (int s = 0; s < shapes.size(); s++) { tinyobj::shape_t& shape = shapes[s]; int faceCount = shape.mesh.indices.size(); for (int f = 0; f < faceCount; f += 3) { //b3Vector3 normal(face.m_plane[0],face.m_plane[1],face.m_plane[2]); if (1) { b3Vector3 normal = b3MakeVector3(0, 1, 0); int vtxBaseIndex = vertices->size(); indicesPtr->push_back(vtxBaseIndex); indicesPtr->push_back(vtxBaseIndex + 1); indicesPtr->push_back(vtxBaseIndex + 2); GLInstanceVertex vtx0; vtx0.xyzw[0] = shape.mesh.positions[shape.mesh.indices[f] * 3 + 0]; vtx0.xyzw[1] = shape.mesh.positions[shape.mesh.indices[f] * 3 + 1]; vtx0.xyzw[2] = shape.mesh.positions[shape.mesh.indices[f] * 3 + 2]; vtx0.xyzw[3] = 0.f; vtx0.uv[0] = 0.5f; //shape.mesh.positions[shape.mesh.indices[f]*3+2];? vtx0.uv[1] = 0.5f; GLInstanceVertex vtx1; vtx1.xyzw[0] = shape.mesh.positions[shape.mesh.indices[f + 1] * 3 + 0]; vtx1.xyzw[1] = shape.mesh.positions[shape.mesh.indices[f + 1] * 3 + 1]; vtx1.xyzw[2] = shape.mesh.positions[shape.mesh.indices[f + 1] * 3 + 2]; vtx1.xyzw[3] = 0.f; vtx1.uv[0] = 0.5f; //obj->textureList[face->vertex_index[1]]->e[0]; vtx1.uv[1] = 0.5f; //obj->textureList[face->vertex_index[1]]->e[1]; GLInstanceVertex vtx2; vtx2.xyzw[0] = shape.mesh.positions[shape.mesh.indices[f + 2] * 3 + 0]; vtx2.xyzw[1] = shape.mesh.positions[shape.mesh.indices[f + 2] * 3 + 1]; vtx2.xyzw[2] = shape.mesh.positions[shape.mesh.indices[f + 2] * 3 + 2]; vtx2.xyzw[3] = 0.f; vtx2.uv[0] = 0.5f; vtx2.uv[1] = 0.5f; b3Vector3 v0 = b3MakeVector3(vtx0.xyzw[0], vtx0.xyzw[1], vtx0.xyzw[2]); b3Vector3 v1 = b3MakeVector3(vtx1.xyzw[0], vtx1.xyzw[1], vtx1.xyzw[2]); b3Vector3 v2 = b3MakeVector3(vtx2.xyzw[0], vtx2.xyzw[1], vtx2.xyzw[2]); normal = (v1 - v0).cross(v2 - v0); normal.normalize(); vtx0.normal[0] = normal[0]; vtx0.normal[1] = normal[1]; vtx0.normal[2] = normal[2]; vtx1.normal[0] = normal[0]; vtx1.normal[1] = normal[1]; vtx1.normal[2] = normal[2]; vtx2.normal[0] = normal[0]; vtx2.normal[1] = normal[1]; vtx2.normal[2] = normal[2]; vertices->push_back(vtx0); vertices->push_back(vtx1); vertices->push_back(vtx2); } } } GLInstanceGraphicsShape* gfxShape = new GLInstanceGraphicsShape; gfxShape->m_vertices = vertices; gfxShape->m_numvertices = vertices->size(); gfxShape->m_indices = indicesPtr; gfxShape->m_numIndices = indicesPtr->size(); for (int i = 0; i < 4; i++) gfxShape->m_scaling[i] = 1; //bake the scaling into the vertices return gfxShape; } } void ConcaveScene::createConcaveMesh(const ConstructionInfo& ci, const char* fileName, const b3Vector3& shift, const b3Vector3& scaling) { char relativeFileName[1024]; const char* prefix[] = {"./data/", "../data/", "../../data/", "../../../data/", "../../../../data/"}; int prefixIndex = -1; { int numPrefixes = sizeof(prefix) / sizeof(char*); for (int i = 0; i < numPrefixes; i++) { FILE* f = 0; sprintf(relativeFileName, "%s%s", prefix[i], fileName); f = fopen(relativeFileName, "r"); if (f) { fclose(f); prefixIndex = i; break; } } } if (prefixIndex < 0) return; int index = 10; { std::vector shapes; std::string err = tinyobj::LoadObj(shapes, relativeFileName, prefix[prefixIndex]); GLInstanceGraphicsShape* shape = createGraphicsShapeFromWavefrontObj(shapes); b3AlignedObjectArray verts; for (int i = 0; i < shape->m_numvertices; i++) { for (int j = 0; j < 3; j++) shape->m_vertices->at(i).xyzw[j] += shift[j]; b3Vector3 vtx = b3MakeVector3(shape->m_vertices->at(i).xyzw[0], shape->m_vertices->at(i).xyzw[1], shape->m_vertices->at(i).xyzw[2]); verts.push_back(vtx * scaling); } int colIndex = m_data->m_np->registerConcaveMesh(&verts, shape->m_indices, b3MakeVector3(1, 1, 1)); { int strideInBytes = 9 * sizeof(float); int numVertices = sizeof(cube_vertices) / strideInBytes; int numIndices = sizeof(cube_indices) / sizeof(int); //int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices); //int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices); int shapeId = ci.m_instancingRenderer->registerShape(&shape->m_vertices->at(0).xyzw[0], shape->m_numvertices, &shape->m_indices->at(0), shape->m_numIndices); b3Quaternion orn(0, 0, 0, 1); b3Vector4 color = b3MakeVector4(0.3, 0.3, 1, 1.f); //0.5);//1.f { float mass = 0.f; b3Vector3 position = b3MakeVector3(0, 0, 0); int id = ci.m_instancingRenderer->registerGraphicsInstance(shapeId, position, orn, color, scaling); int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(mass, position, orn, colIndex, index, false); index++; } delete shape->m_indices; delete shape->m_vertices; delete shape; } } } void ConcaveScene::setupScene(const ConstructionInfo& ci) { if (1) { //char* fileName = "slopedPlane100.obj"; //char* fileName = "plane100.obj"; // char* fileName = "plane100.obj"; //char* fileName = "teddy.obj";//"plane.obj"; // char* fileName = "sponza_closed.obj";//"plane.obj"; //char* fileName = "leoTest1.obj"; const char* fileName = "samurai_monastry.obj"; // char* fileName = "teddy2_VHACD_CHs.obj"; b3Vector3 shift1 = b3MakeVector3(0, 0, 0); //0,230,80);//150,-100,-120); b3Vector4 scaling = b3MakeVector4(10, 10, 10, 1); // createConcaveMesh(ci,"plane100.obj",shift1,scaling); //createConcaveMesh(ci,"plane100.obj",shift,scaling); // b3Vector3 shift2(0,0,0);//0,230,80);//150,-100,-120); // createConcaveMesh(ci,"teddy.obj",shift2,scaling); // b3Vector3 shift3(130,-150,-75);//0,230,80);//150,-100,-120); // createConcaveMesh(ci,"leoTest1.obj",shift3,scaling); createConcaveMesh(ci, fileName, shift1, scaling); } else { int strideInBytes = 9 * sizeof(float); int numVertices = sizeof(cube_vertices) / strideInBytes; int numIndices = sizeof(cube_indices) / sizeof(int); int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0], numVertices, cube_indices, numIndices); int group = 1; int mask = 1; int index = 0; { b3Vector4 scaling = b3MakeVector4(400, 1., 400, 1); int colIndex = m_data->m_np->registerConvexHullShape(&cube_vertices[0], strideInBytes, numVertices, scaling); b3Vector3 position = b3MakeVector3(0, -2, 0); b3Quaternion orn(0, 0, 0, 1); b3Vector4 color = b3MakeVector4(0, 0, 1, 1); int id = ci.m_instancingRenderer->registerGraphicsInstance(shapeId, position, orn, color, scaling); int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(0.f, position, orn, colIndex, index, false); } } createDynamicObjects(ci); m_data->m_rigidBodyPipeline->writeAllInstancesToGpu(); float camPos[4] = {0, 0, 0, 0}; //65.5,4.5,65.5,0}; //float camPos[4]={1,12.5,1.5,0}; m_instancingRenderer->setCameraPitch(45); m_instancingRenderer->setCameraTargetPosition(camPos); m_instancingRenderer->setCameraDistance(355); char msg[1024]; int numInstances = m_data->m_rigidBodyPipeline->getNumBodies(); sprintf(msg, "Num objects = %d", numInstances); if (ci.m_gui) ci.m_gui->setStatusBarMessage(msg, true); } void ConcaveScene::createDynamicObjects(const ConstructionInfo& ci) { int strideInBytes = 9 * sizeof(float); int numVertices = sizeof(cube_vertices) / strideInBytes; int numIndices = sizeof(cube_indices) / sizeof(int); //int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices); int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0], numVertices, cube_indices, numIndices); int group = 1; int mask = 1; int index = 0; if (1) { int curColor = 0; b3Vector4 colors[4] = { b3MakeVector4(1, 1, 1, 1), b3MakeVector4(1, 1, 0.3, 1), b3MakeVector4(0.3, 1, 1, 1), b3MakeVector4(0.3, 0.3, 1, 1), }; b3ConvexUtility* utilPtr = new b3ConvexUtility(); b3Vector4 scaling = b3MakeVector4(1, 1, 1, 1); { b3AlignedObjectArray verts; unsigned char* vts = (unsigned char*)cube_vertices; for (int i = 0; i < numVertices; i++) { float* vertex = (float*)&vts[i * strideInBytes]; verts.push_back(b3MakeVector3(vertex[0] * scaling[0], vertex[1] * scaling[1], vertex[2] * scaling[2])); } bool merge = true; if (numVertices) { utilPtr->initializePolyhedralFeatures(&verts[0], verts.size(), merge); } } // int colIndex = m_data->m_np->registerConvexHullShape(&cube_vertices[0],strideInBytes,numVertices, scaling); int colIndex = -1; if (ci.m_useInstancedCollisionShapes) colIndex = m_data->m_np->registerConvexHullShape(utilPtr); for (int i = 0; i < ci.arraySizeX; i++) { for (int j = 0; j < ci.arraySizeY; j++) { for (int k = 0; k < ci.arraySizeZ; k++) { if (!ci.m_useInstancedCollisionShapes) colIndex = m_data->m_np->registerConvexHullShape(utilPtr); float mass = 1; //b3Vector3 position(-2*ci.gapX+i*ci.gapX,25+j*ci.gapY,-2*ci.gapZ+k*ci.gapZ); b3Vector3 position = b3MakeVector3(-(ci.arraySizeX / 2) * CONCAVE_GAPX + i * CONCAVE_GAPX, 23 + j * CONCAVE_GAPY, -(ci.arraySizeZ / 2) * CONCAVE_GAPZ + k * CONCAVE_GAPZ); b3Quaternion orn(0, 0, 0, 1); b3Vector4 color = colors[curColor]; curColor++; curColor &= 3; int id = ci.m_instancingRenderer->registerGraphicsInstance(shapeId, position, orn, color, scaling); int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(mass, position, orn, colIndex, index, false); index++; } } } } } void ConcaveCompoundScene::setupScene(const ConstructionInfo& ci) { ConcaveScene::setupScene(ci); float camPos[4] = {0, 50, 0, 0}; //65.5,4.5,65.5,0}; //float camPos[4]={1,12.5,1.5,0}; m_instancingRenderer->setCameraPitch(45); m_instancingRenderer->setCameraTargetPosition(camPos); m_instancingRenderer->setCameraDistance(40); } void ConcaveCompound2Scene::createDynamicObjects(const ConstructionInfo& ci) { const char* fileName = "teddy2_VHACD_CHs.obj"; //char* fileName = "cube_offset.obj"; b3Vector3 shift = b3MakeVector3(0, 0, 0); //0,230,80);//150,-100,-120); b3Vector4 scaling = b3MakeVector4(1, 1, 1, 1); const char* prefix[] = {"./data/", "../data/", "../../data/", "../../../data/", "../../../../data/"}; int prefixIndex = -1; char relativeFileName[1024]; { int numPrefixes = sizeof(prefix) / sizeof(char*); for (int i = 0; i < numPrefixes; i++) { sprintf(relativeFileName, "%s%s", prefix[i], fileName); FILE* f = 0; f = fopen(relativeFileName, "r"); if (f) { prefixIndex = i; fclose(f); break; } } } if (prefixIndex < 0) return; std::vector shapes; std::string err = tinyobj::LoadObj(shapes, relativeFileName, prefix[prefixIndex]); if (shapes.size() > 0) { int strideInBytes = 9 * sizeof(float); b3AlignedObjectArray vertexArray; b3AlignedObjectArray indexArray; //int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices); int group = 1; int mask = 1; int index = 0; int colIndex = 0; b3AlignedObjectArray vertices; int stride2 = sizeof(GLInstanceVertex); b3Assert(stride2 == strideInBytes); { b3AlignedObjectArray childShapes; int numChildShapes = shapes.size(); for (int i = 0; i < numChildShapes; i++) // int i=4; { tinyobj::shape_t& shape = shapes[i]; int numVertices = shape.mesh.positions.size() / 3; int numFaces = shape.mesh.indices.size() / 3; //for now, only support polyhedral child shapes b3GpuChildShape child; b3Vector3 pos = b3MakeVector3(0, 0, 0); b3Quaternion orn(0, 0, 0, 1); for (int v = 0; v < 4; v++) { child.m_childPosition[v] = pos[v]; child.m_childOrientation[v] = orn[v]; } b3Transform tr; tr.setIdentity(); tr.setOrigin(pos); tr.setRotation(orn); int baseIndex = vertexArray.size(); for (int f = 0; f < numFaces; f++) { for (int i = 0; i < 3; i++) { indexArray.push_back(baseIndex + shape.mesh.indices[f * 3 + i]); } } b3Vector3 center = b3MakeVector3(0, 0, 0); b3AlignedObjectArray tmpVertices; //add transformed graphics vertices and indices b3Vector3 myScaling = b3MakeVector3(50, 50, 50); //300,300,300); for (int v = 0; v < numVertices; v++) { GLInstanceVertex vert; vert.uv[0] = 0.5f; vert.uv[1] = 0.5f; vert.normal[0] = 0.f; vert.normal[1] = 1.f; vert.normal[2] = 0.f; b3Vector3 vertPos; vertPos[0] = shape.mesh.positions[v * 3 + 0] * myScaling[0]; vertPos[1] = shape.mesh.positions[v * 3 + 1] * myScaling[1]; vertPos[2] = shape.mesh.positions[v * 3 + 2] * myScaling[2]; vertPos[3] = 0.f; center += vertPos; } center /= numVertices; for (int v = 0; v < numVertices; v++) { GLInstanceVertex vert; vert.uv[0] = 0.5f; vert.uv[1] = 0.5f; vert.normal[0] = 0.f; vert.normal[1] = 1.f; vert.normal[2] = 0.f; b3Vector3 vertPos; vertPos[0] = shape.mesh.positions[v * 3 + 0] * myScaling[0]; vertPos[1] = shape.mesh.positions[v * 3 + 1] * myScaling[1]; vertPos[2] = shape.mesh.positions[v * 3 + 2] * myScaling[2]; vertPos[3] = 0.f; // vertPos-=center; vert.xyzw[0] = vertPos[0]; vert.xyzw[1] = vertPos[1]; vert.xyzw[2] = vertPos[2]; tmpVertices.push_back(vert); b3Vector3 newPos = tr * vertPos; vert.xyzw[0] = newPos[0]; vert.xyzw[1] = newPos[1]; vert.xyzw[2] = newPos[2]; vert.xyzw[3] = 0.f; vertexArray.push_back(vert); } int childColIndex = m_data->m_np->registerConvexHullShape(&tmpVertices[0].xyzw[0], strideInBytes, numVertices, scaling); child.m_shapeIndex = childColIndex; childShapes.push_back(child); colIndex = childColIndex; } colIndex = m_data->m_np->registerCompoundShape(&childShapes); } //int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices); int shapeId = ci.m_instancingRenderer->registerShape(&vertexArray[0].xyzw[0], vertexArray.size(), &indexArray[0], indexArray.size()); b3Vector4 colors[4] = { b3MakeVector4(1, 0, 0, 1), b3MakeVector4(0, 1, 0, 1), b3MakeVector4(0, 0, 1, 1), b3MakeVector4(0, 1, 1, 1), }; int curColor = 0; for (int i = 0; i < 1; i++) //ci.arraySizeX;i++) { for (int j = 0; j < 4; j++) { // for (int k=0;kregisterGraphicsInstance(shapeId, position, orn, color, scaling); int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(mass, position, orn, colIndex, index, false); index++; } } } } } void ConcaveCompoundScene::createDynamicObjects(const ConstructionInfo& ci) { int strideInBytes = 9 * sizeof(float); int numVertices = sizeof(cube_vertices) / strideInBytes; int numIndices = sizeof(cube_indices) / sizeof(int); b3AlignedObjectArray vertexArray; b3AlignedObjectArray indexArray; //int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices); int group = 1; int mask = 1; int index = 0; float scaling[4] = {1, 1, 1, 1}; int colIndex = 0; GLInstanceVertex* cubeVerts = (GLInstanceVertex*)&cube_vertices[0]; int stride2 = sizeof(GLInstanceVertex); b3Assert(stride2 == strideInBytes); { int childColIndex = m_data->m_np->registerConvexHullShape(&cube_vertices[0], strideInBytes, numVertices, scaling); b3Vector3 childPositions[3] = { b3MakeVector3(0, -2, 0), b3MakeVector3(0, 0, 0), b3MakeVector3(0, 0, 2)}; b3AlignedObjectArray childShapes; int numChildShapes = 3; for (int i = 0; i < numChildShapes; i++) { //for now, only support polyhedral child shapes b3GpuChildShape child; child.m_shapeIndex = childColIndex; b3Vector3 pos = childPositions[i]; b3Quaternion orn(0, 0, 0, 1); for (int v = 0; v < 4; v++) { child.m_childPosition[v] = pos[v]; child.m_childOrientation[v] = orn[v]; } childShapes.push_back(child); b3Transform tr; tr.setIdentity(); tr.setOrigin(pos); tr.setRotation(orn); int baseIndex = vertexArray.size(); for (int j = 0; j < numIndices; j++) indexArray.push_back(cube_indices[j] + baseIndex); //add transformed graphics vertices and indices for (int v = 0; v < numVertices; v++) { GLInstanceVertex vert = cubeVerts[v]; b3Vector3 vertPos = b3MakeVector3(vert.xyzw[0], vert.xyzw[1], vert.xyzw[2]); b3Vector3 newPos = tr * vertPos; vert.xyzw[0] = newPos[0]; vert.xyzw[1] = newPos[1]; vert.xyzw[2] = newPos[2]; vert.xyzw[3] = 0.f; vertexArray.push_back(vert); } } colIndex = m_data->m_np->registerCompoundShape(&childShapes); } //int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices); int shapeId = ci.m_instancingRenderer->registerShape(&vertexArray[0].xyzw[0], vertexArray.size(), &indexArray[0], indexArray.size()); b3Vector4 colors[4] = { b3MakeVector4(1, 0, 0, 1), b3MakeVector4(0, 1, 0, 1), b3MakeVector4(0, 0, 1, 1), b3MakeVector4(0, 1, 1, 1), }; int curColor = 0; for (int i = 0; i < ci.arraySizeX; i++) { for (int j = 0; j < ci.arraySizeY; j++) { for (int k = 0; k < ci.arraySizeZ; k++) { float mass = 1; //j==0? 0.f : 1.f; b3Vector3 position = b3MakeVector3((-ci.arraySizeX / 2 + i) * ci.gapX, 50 + j * ci.gapY, (-ci.arraySizeZ / 2 + k) * ci.gapZ); //b3Quaternion orn(0,0,0,1); b3Quaternion orn(b3MakeVector3(1, 0, 0), 0.7); b3Vector4 color = colors[curColor]; curColor++; curColor &= 3; b3Vector4 scaling = b3MakeVector4(1, 1, 1, 1); int id = ci.m_instancingRenderer->registerGraphicsInstance(shapeId, position, orn, color, scaling); int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(mass, position, orn, colIndex, index, false); index++; } } } } void ConcaveSphereScene::setupScene(const ConstructionInfo& ci) { ConcaveScene::setupScene(ci); float camPos[4] = {0, 50, 0, 0}; //65.5,4.5,65.5,0}; //float camPos[4]={1,12.5,1.5,0}; m_instancingRenderer->setCameraPitch(45); m_instancingRenderer->setCameraTargetPosition(camPos); m_instancingRenderer->setCameraDistance(40); } void ConcaveSphereScene::createDynamicObjects(const ConstructionInfo& ci) { b3Vector4 colors[4] = { b3MakeVector4(1, 0, 0, 1), b3MakeVector4(0, 1, 0, 1), b3MakeVector4(0, 1, 1, 1), b3MakeVector4(1, 1, 0, 1), }; int index = 0; int curColor = 0; float radius = 1; //int colIndex = m_data->m_np->registerConvexHullShape(&cube_vertices[0],strideInBytes,numVertices, scaling); int colIndex = m_data->m_np->registerSphereShape(radius); //>registerConvexHullShape(&cube_vertices[0],strideInBytes,numVertices, scaling); int prevGraphicsShapeIndex = registerGraphicsSphereShape(ci, radius, false); for (int i = 0; i < ci.arraySizeX; i++) { for (int j = 0; j < ci.arraySizeY; j++) { for (int k = 0; k < ci.arraySizeZ; k++) { float mass = 1.f; b3Vector3 position = b3MakeVector3(-(ci.arraySizeX / 2) * 8 + i * 8, 50 + j * 8, -(ci.arraySizeZ / 2) * 8 + k * 8); //b3Vector3 position(0,-41,0);//0,0,0);//i*radius*3,-41+j*radius*3,k*radius*3); b3Quaternion orn(0, 0, 0, 1); b3Vector4 color = colors[curColor]; curColor++; curColor &= 3; b3Vector4 scaling = b3MakeVector4(radius, radius, radius, 1); int id = ci.m_instancingRenderer->registerGraphicsInstance(prevGraphicsShapeIndex, position, orn, color, scaling); int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(mass, position, orn, colIndex, index, false); index++; } } } }