#include "PhysicsDirect.h" #include "PhysicsClientSharedMemory.h" #include "../CommonInterfaces/CommonGUIHelperInterface.h" #include "SharedMemoryCommands.h" #include "PhysicsCommandProcessorInterface.h" #include "../Utils/b3Clock.h" #include "LinearMath/btHashMap.h" #include "LinearMath/btAlignedObjectArray.h" #include "../../Extras/Serialize/BulletFileLoader/btBulletFile.h" #include "../../Extras/Serialize/BulletFileLoader/autogenerated/bullet.h" #include "BodyJointInfoUtility.h" #include #include "SharedMemoryUserData.h" #include "LinearMath/btQuickprof.h" struct BodyJointInfoCache2 { std::string m_baseName; btAlignedObjectArray m_jointInfo; std::string m_bodyName; btAlignedObjectArray m_userDataIds; int m_numDofs; ~BodyJointInfoCache2() { } }; struct PhysicsDirectInternalData { DummyGUIHelper m_noGfx; btAlignedObjectArray m_serverDNA; SharedMemoryCommand m_command; SharedMemoryStatus m_serverStatus; SharedMemoryCommand m_tmpInfoRequestCommand; SharedMemoryStatus m_tmpInfoStatus; bool m_hasStatus; bool m_verboseOutput; btAlignedObjectArray m_debugLinesFrom; btAlignedObjectArray m_debugLinesTo; btAlignedObjectArray m_debugLinesColor; btHashMap m_bodyJointMap; btHashMap m_userConstraintInfoMap; btAlignedObjectArray m_profileTimings; btHashMap m_profileTimingStringArray; char m_bulletStreamDataServerToClient[SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE]; btAlignedObjectArray m_cachedMassMatrix; int m_cachedCameraPixelsWidth; int m_cachedCameraPixelsHeight; btAlignedObjectArray m_cachedCameraPixelsRGBA; btAlignedObjectArray m_cachedCameraDepthBuffer; btAlignedObjectArray m_cachedSegmentationMask; btAlignedObjectArray m_cachedContactPoints; btAlignedObjectArray m_cachedOverlappingObjects; btAlignedObjectArray m_cachedVisualShapes; btAlignedObjectArray m_cachedCollisionShapes; b3MeshData m_cachedMeshData; btAlignedObjectArray m_cachedVertexPositions; btAlignedObjectArray m_cachedVREvents; btAlignedObjectArray m_cachedKeyboardEvents; btAlignedObjectArray m_cachedMouseEvents; btAlignedObjectArray m_raycastHits; btHashMap m_userDataMap; btHashMap m_userDataHandleLookup; btAlignedObjectArray m_cachedReturnData; b3UserDataValue m_cachedReturnDataValue; PhysicsCommandProcessorInterface* m_commandProcessor; bool m_ownsCommandProcessor; double m_timeOutInSeconds; SendActualStateSharedMemoryStorage m_cachedState; PhysicsDirectInternalData() : m_hasStatus(false), m_verboseOutput(false), m_cachedCameraPixelsWidth(0), m_cachedCameraPixelsHeight(0), m_commandProcessor(NULL), m_ownsCommandProcessor(false), m_timeOutInSeconds(1e30) { memset(&m_cachedMeshData.m_numVertices, 0, sizeof(b3MeshData)); memset(&m_command, 0, sizeof(m_command)); memset(&m_serverStatus, 0, sizeof(m_serverStatus)); memset(m_bulletStreamDataServerToClient, 0, sizeof(m_bulletStreamDataServerToClient)); } }; PhysicsDirect::PhysicsDirect(PhysicsCommandProcessorInterface* physSdk, bool passSdkOwnership) { int sz = sizeof(SharedMemoryCommand); int sz2 = sizeof(SharedMemoryStatus); m_data = new PhysicsDirectInternalData; m_data->m_commandProcessor = physSdk; m_data->m_ownsCommandProcessor = passSdkOwnership; } PhysicsDirect::~PhysicsDirect() { for (int i = 0; i < m_data->m_profileTimingStringArray.size(); i++) { std::string** str = m_data->m_profileTimingStringArray.getAtIndex(i); if (str) { delete *str; } } m_data->m_profileTimingStringArray.clear(); if (m_data->m_commandProcessor->isConnected()) { m_data->m_commandProcessor->disconnect(); } if (m_data->m_ownsCommandProcessor) { delete m_data->m_commandProcessor; } resetData(); delete m_data; } void PhysicsDirect::resetData() { m_data->m_debugLinesFrom.clear(); m_data->m_debugLinesTo.clear(); m_data->m_debugLinesColor.clear(); m_data->m_userConstraintInfoMap.clear(); m_data->m_userDataMap.clear(); m_data->m_userDataHandleLookup.clear(); clearCachedBodies(); } void PhysicsDirect::clearCachedBodies() { for (int i = 0; i < m_data->m_bodyJointMap.size(); i++) { BodyJointInfoCache2** bodyJointsPtr = m_data->m_bodyJointMap.getAtIndex(i); if (bodyJointsPtr && *bodyJointsPtr) { delete (*bodyJointsPtr); } } m_data->m_bodyJointMap.clear(); } // return true if connection succesfull, can also check 'isConnected' bool PhysicsDirect::connect() { bool connected = m_data->m_commandProcessor->connect(); m_data->m_commandProcessor->setGuiHelper(&m_data->m_noGfx); if (connected) //also request serialization data { SharedMemoryCommand command; command.m_type = CMD_REQUEST_INTERNAL_DATA; bool hasStatus = m_data->m_commandProcessor->processCommand(command, m_data->m_serverStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE); if (hasStatus) { postProcessStatus(m_data->m_serverStatus); } else { b3Clock clock; double timeSec = clock.getTimeInSeconds(); while ((!hasStatus) && (clock.getTimeInSeconds() - timeSec < 10)) { const SharedMemoryStatus* stat = processServerStatus(); if (stat) { hasStatus = true; } } } } return connected; } // return true if connection succesfull, can also check 'isConnected' bool PhysicsDirect::connect(struct GUIHelperInterface* guiHelper) { bool connected = m_data->m_commandProcessor->connect(); m_data->m_commandProcessor->setGuiHelper(guiHelper); return connected; } void PhysicsDirect::renderScene() { int renderFlags = 0; m_data->m_commandProcessor->renderScene(renderFlags); } void PhysicsDirect::debugDraw(int debugDrawMode) { m_data->m_commandProcessor->physicsDebugDraw(debugDrawMode); } ////todo: rename to 'disconnect' void PhysicsDirect::disconnectSharedMemory() { m_data->m_commandProcessor->disconnect(); m_data->m_commandProcessor->setGuiHelper(0); } bool PhysicsDirect::isConnected() const { return m_data->m_commandProcessor->isConnected(); } // return non-null if there is a status, nullptr otherwise const SharedMemoryStatus* PhysicsDirect::processServerStatus() { if (!m_data->m_hasStatus) { m_data->m_hasStatus = m_data->m_commandProcessor->receiveStatus(m_data->m_serverStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE); } SharedMemoryStatus* stat = 0; if (m_data->m_hasStatus) { stat = &m_data->m_serverStatus; postProcessStatus(m_data->m_serverStatus); m_data->m_hasStatus = false; } return stat; } SharedMemoryCommand* PhysicsDirect::getAvailableSharedMemoryCommand() { return &m_data->m_command; } bool PhysicsDirect::canSubmitCommand() const { return m_data->m_commandProcessor->isConnected(); } bool PhysicsDirect::processDebugLines(const struct SharedMemoryCommand& orgCommand) { SharedMemoryCommand command = orgCommand; const SharedMemoryStatus& serverCmd = m_data->m_serverStatus; do { bool hasStatus = m_data->m_commandProcessor->processCommand(command, m_data->m_serverStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE); b3Clock clock; double startTime = clock.getTimeInSeconds(); double timeOutInSeconds = m_data->m_timeOutInSeconds; while ((!hasStatus) && (clock.getTimeInSeconds() - startTime < timeOutInSeconds)) { const SharedMemoryStatus* stat = processServerStatus(); if (stat) { hasStatus = true; } } m_data->m_hasStatus = hasStatus; if (hasStatus) { btAssert(m_data->m_serverStatus.m_type == CMD_DEBUG_LINES_COMPLETED); if (m_data->m_verboseOutput) { b3Printf("Success receiving %d debug lines", serverCmd.m_sendDebugLinesArgs.m_numDebugLines); } int numLines = serverCmd.m_sendDebugLinesArgs.m_numDebugLines; float* linesFrom = (float*)&m_data->m_bulletStreamDataServerToClient[0]; float* linesTo = (float*)(&m_data->m_bulletStreamDataServerToClient[0] + numLines * 3 * sizeof(float)); float* linesColor = (float*)(&m_data->m_bulletStreamDataServerToClient[0] + 2 * numLines * 3 * sizeof(float)); m_data->m_debugLinesFrom.resize(serverCmd.m_sendDebugLinesArgs.m_startingLineIndex + numLines); m_data->m_debugLinesTo.resize(serverCmd.m_sendDebugLinesArgs.m_startingLineIndex + numLines); m_data->m_debugLinesColor.resize( serverCmd.m_sendDebugLinesArgs.m_startingLineIndex + numLines); for (int i = 0; i < numLines; i++) { TmpFloat3 from = CreateTmpFloat3(linesFrom[i * 3], linesFrom[i * 3 + 1], linesFrom[i * 3 + 2]); TmpFloat3 to = CreateTmpFloat3(linesTo[i * 3], linesTo[i * 3 + 1], linesTo[i * 3 + 2]); TmpFloat3 color = CreateTmpFloat3(linesColor[i * 3], linesColor[i * 3 + 1], linesColor[i * 3 + 2]); m_data ->m_debugLinesFrom[serverCmd.m_sendDebugLinesArgs.m_startingLineIndex + i] = from; m_data->m_debugLinesTo[serverCmd.m_sendDebugLinesArgs.m_startingLineIndex + i] = to; m_data->m_debugLinesColor[serverCmd.m_sendDebugLinesArgs.m_startingLineIndex + i] = color; } if (serverCmd.m_sendDebugLinesArgs.m_numRemainingDebugLines > 0) { m_data->m_hasStatus = false; command.m_type = CMD_REQUEST_DEBUG_LINES; command.m_requestDebugLinesArguments.m_startingLineIndex = serverCmd.m_sendDebugLinesArgs.m_numDebugLines + serverCmd.m_sendDebugLinesArgs.m_startingLineIndex; } } } while (serverCmd.m_sendDebugLinesArgs.m_numRemainingDebugLines > 0); return m_data->m_hasStatus; } bool PhysicsDirect::processVisualShapeData(const struct SharedMemoryCommand& orgCommand) { SharedMemoryCommand command = orgCommand; const SharedMemoryStatus& serverCmd = m_data->m_serverStatus; do { bool hasStatus = m_data->m_commandProcessor->processCommand(command, m_data->m_serverStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE); b3Clock clock; double startTime = clock.getTimeInSeconds(); double timeOutInSeconds = m_data->m_timeOutInSeconds; while ((!hasStatus) && (clock.getTimeInSeconds() - startTime < timeOutInSeconds)) { const SharedMemoryStatus* stat = processServerStatus(); if (stat) { hasStatus = true; } } m_data->m_hasStatus = hasStatus; if (hasStatus) { if (m_data->m_verboseOutput) { b3Printf("Visual Shape Information Request OK\n"); } int startVisualShapeIndex = serverCmd.m_sendVisualShapeArgs.m_startingVisualShapeIndex; int numVisualShapesCopied = serverCmd.m_sendVisualShapeArgs.m_numVisualShapesCopied; m_data->m_cachedVisualShapes.resize(startVisualShapeIndex + numVisualShapesCopied); b3VisualShapeData* shapeData = (b3VisualShapeData*)&m_data->m_bulletStreamDataServerToClient[0]; for (int i = 0; i < numVisualShapesCopied; i++) { m_data->m_cachedVisualShapes[startVisualShapeIndex + i] = shapeData[i]; } if (serverCmd.m_sendVisualShapeArgs.m_numRemainingVisualShapes > 0 && serverCmd.m_sendVisualShapeArgs.m_numVisualShapesCopied) { m_data->m_hasStatus = false; command.m_type = CMD_REQUEST_VISUAL_SHAPE_INFO; command.m_requestVisualShapeDataArguments.m_startingVisualShapeIndex = serverCmd.m_sendVisualShapeArgs.m_startingVisualShapeIndex + serverCmd.m_sendVisualShapeArgs.m_numVisualShapesCopied; command.m_requestVisualShapeDataArguments.m_bodyUniqueId = serverCmd.m_sendVisualShapeArgs.m_bodyUniqueId; } } } while (serverCmd.m_sendVisualShapeArgs.m_numRemainingVisualShapes > 0 && serverCmd.m_sendVisualShapeArgs.m_numVisualShapesCopied); return m_data->m_hasStatus; } bool PhysicsDirect::processOverlappingObjects(const struct SharedMemoryCommand& orgCommand) { SharedMemoryCommand command = orgCommand; const SharedMemoryStatus& serverCmd = m_data->m_serverStatus; do { bool hasStatus = m_data->m_commandProcessor->processCommand(command, m_data->m_serverStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE); b3Clock clock; double startTime = clock.getTimeInSeconds(); double timeOutInSeconds = m_data->m_timeOutInSeconds; while ((!hasStatus) && (clock.getTimeInSeconds() - startTime < timeOutInSeconds)) { const SharedMemoryStatus* stat = processServerStatus(); if (stat) { hasStatus = true; } } m_data->m_hasStatus = hasStatus; if (hasStatus) { if (m_data->m_verboseOutput) { b3Printf("Overlapping Objects Request OK\n"); } int startOverlapIndex = serverCmd.m_sendOverlappingObjectsArgs.m_startingOverlappingObjectIndex; int numOverlapCopied = serverCmd.m_sendOverlappingObjectsArgs.m_numOverlappingObjectsCopied; m_data->m_cachedOverlappingObjects.resize(startOverlapIndex + numOverlapCopied); b3OverlappingObject* objects = (b3OverlappingObject*)&m_data->m_bulletStreamDataServerToClient[0]; for (int i = 0; i < numOverlapCopied; i++) { m_data->m_cachedOverlappingObjects[startOverlapIndex + i] = objects[i]; } if (serverCmd.m_sendOverlappingObjectsArgs.m_numRemainingOverlappingObjects > 0 && serverCmd.m_sendOverlappingObjectsArgs.m_numOverlappingObjectsCopied) { m_data->m_hasStatus = false; command.m_type = CMD_REQUEST_AABB_OVERLAP; command.m_requestOverlappingObjectsArgs.m_startingOverlappingObjectIndex = serverCmd.m_sendOverlappingObjectsArgs.m_startingOverlappingObjectIndex + serverCmd.m_sendOverlappingObjectsArgs.m_numOverlappingObjectsCopied; } } } while (serverCmd.m_sendOverlappingObjectsArgs.m_numRemainingOverlappingObjects > 0 && serverCmd.m_sendOverlappingObjectsArgs.m_numOverlappingObjectsCopied); return m_data->m_hasStatus; } bool PhysicsDirect::processContactPointData(const struct SharedMemoryCommand& orgCommand) { SharedMemoryCommand command = orgCommand; const SharedMemoryStatus& serverCmd = m_data->m_serverStatus; do { bool hasStatus = m_data->m_commandProcessor->processCommand(command, m_data->m_serverStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE); b3Clock clock; double startTime = clock.getTimeInSeconds(); double timeOutInSeconds = m_data->m_timeOutInSeconds; while ((!hasStatus) && (clock.getTimeInSeconds() - startTime < timeOutInSeconds)) { const SharedMemoryStatus* stat = processServerStatus(); if (stat) { hasStatus = true; } } m_data->m_hasStatus = hasStatus; if (hasStatus) { if (m_data->m_verboseOutput) { b3Printf("Contact Point Information Request OK\n"); } int startContactIndex = serverCmd.m_sendContactPointArgs.m_startingContactPointIndex; int numContactsCopied = serverCmd.m_sendContactPointArgs.m_numContactPointsCopied; m_data->m_cachedContactPoints.resize(startContactIndex + numContactsCopied); b3ContactPointData* contactData = (b3ContactPointData*)&m_data->m_bulletStreamDataServerToClient[0]; for (int i = 0; i < numContactsCopied; i++) { m_data->m_cachedContactPoints[startContactIndex + i] = contactData[i]; } if (serverCmd.m_sendContactPointArgs.m_numRemainingContactPoints > 0 && serverCmd.m_sendContactPointArgs.m_numContactPointsCopied) { m_data->m_hasStatus = false; command.m_type = CMD_REQUEST_CONTACT_POINT_INFORMATION; command.m_requestContactPointArguments.m_startingContactPointIndex = serverCmd.m_sendContactPointArgs.m_startingContactPointIndex + serverCmd.m_sendContactPointArgs.m_numContactPointsCopied; command.m_requestContactPointArguments.m_objectAIndexFilter = -1; command.m_requestContactPointArguments.m_objectBIndexFilter = -1; } } } while (serverCmd.m_sendContactPointArgs.m_numRemainingContactPoints > 0 && serverCmd.m_sendContactPointArgs.m_numContactPointsCopied); return m_data->m_hasStatus; } bool PhysicsDirect::processCamera(const struct SharedMemoryCommand& orgCommand) { SharedMemoryCommand command = orgCommand; const SharedMemoryStatus& serverCmd = m_data->m_serverStatus; do { bool hasStatus = m_data->m_commandProcessor->processCommand(command, m_data->m_serverStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE); b3Clock clock; double startTime = clock.getTimeInSeconds(); double timeOutInSeconds = m_data->m_timeOutInSeconds; while ((!hasStatus) && (clock.getTimeInSeconds() - startTime < timeOutInSeconds)) { const SharedMemoryStatus* stat = processServerStatus(); if (stat) { hasStatus = true; } } m_data->m_hasStatus = hasStatus; if (hasStatus) { btAssert(m_data->m_serverStatus.m_type == CMD_CAMERA_IMAGE_COMPLETED); if (m_data->m_verboseOutput) { b3Printf("Camera image OK\n"); } int numBytesPerPixel = 4; //RGBA int numTotalPixels = serverCmd.m_sendPixelDataArguments.m_startingPixelIndex + serverCmd.m_sendPixelDataArguments.m_numPixelsCopied + serverCmd.m_sendPixelDataArguments.m_numRemainingPixels; m_data->m_cachedCameraPixelsWidth = 0; m_data->m_cachedCameraPixelsHeight = 0; int numPixels = serverCmd.m_sendPixelDataArguments.m_imageWidth * serverCmd.m_sendPixelDataArguments.m_imageHeight; m_data->m_cachedCameraPixelsRGBA.reserve(numPixels * numBytesPerPixel); m_data->m_cachedCameraDepthBuffer.resize(numTotalPixels); m_data->m_cachedSegmentationMask.resize(numTotalPixels); m_data->m_cachedCameraPixelsRGBA.resize(numTotalPixels * numBytesPerPixel); unsigned char* rgbaPixelsReceived = (unsigned char*)&m_data->m_bulletStreamDataServerToClient[0]; float* depthBuffer = (float*)&(m_data->m_bulletStreamDataServerToClient[serverCmd.m_sendPixelDataArguments.m_numPixelsCopied * 4]); int* segmentationMaskBuffer = (int*)&(m_data->m_bulletStreamDataServerToClient[serverCmd.m_sendPixelDataArguments.m_numPixelsCopied * 8]); // printf("pixel = %d\n", rgbaPixelsReceived[0]); for (int i = 0; i < serverCmd.m_sendPixelDataArguments.m_numPixelsCopied; i++) { m_data->m_cachedCameraDepthBuffer[i + serverCmd.m_sendPixelDataArguments.m_startingPixelIndex] = depthBuffer[i]; } for (int i = 0; i < serverCmd.m_sendPixelDataArguments.m_numPixelsCopied; i++) { m_data->m_cachedSegmentationMask[i + serverCmd.m_sendPixelDataArguments.m_startingPixelIndex] = segmentationMaskBuffer[i]; } for (int i = 0; i < serverCmd.m_sendPixelDataArguments.m_numPixelsCopied * numBytesPerPixel; i++) { m_data->m_cachedCameraPixelsRGBA[i + serverCmd.m_sendPixelDataArguments.m_startingPixelIndex * numBytesPerPixel] = rgbaPixelsReceived[i]; } if (serverCmd.m_sendPixelDataArguments.m_numRemainingPixels > 0 && serverCmd.m_sendPixelDataArguments.m_numPixelsCopied) { m_data->m_hasStatus = false; // continue requesting remaining pixels command.m_type = CMD_REQUEST_CAMERA_IMAGE_DATA; command.m_requestPixelDataArguments.m_startPixelIndex = serverCmd.m_sendPixelDataArguments.m_startingPixelIndex + serverCmd.m_sendPixelDataArguments.m_numPixelsCopied; } else { m_data->m_cachedCameraPixelsWidth = serverCmd.m_sendPixelDataArguments.m_imageWidth; m_data->m_cachedCameraPixelsHeight = serverCmd.m_sendPixelDataArguments.m_imageHeight; } } } while (serverCmd.m_sendPixelDataArguments.m_numRemainingPixels > 0 && serverCmd.m_sendPixelDataArguments.m_numPixelsCopied); return m_data->m_hasStatus; } bool PhysicsDirect::processMeshData(const struct SharedMemoryCommand& orgCommand) { SharedMemoryCommand command = orgCommand; const SharedMemoryStatus& serverCmd = m_data->m_serverStatus; do { bool hasStatus = m_data->m_commandProcessor->processCommand(command, m_data->m_serverStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE); b3Clock clock; double startTime = clock.getTimeInSeconds(); double timeOutInSeconds = m_data->m_timeOutInSeconds; while ((!hasStatus) && (clock.getTimeInSeconds() - startTime < timeOutInSeconds)) { const SharedMemoryStatus* stat = processServerStatus(); if (stat) { hasStatus = true; } } m_data->m_hasStatus = hasStatus; if (hasStatus) { btAssert(m_data->m_serverStatus.m_type == CMD_REQUEST_MESH_DATA_COMPLETED); if (m_data->m_verboseOutput) { b3Printf("Mesh data OK\n"); } const b3SendMeshDataArgs& args = serverCmd.m_sendMeshDataArgs; int numTotalPixels = args.m_startingVertex + args.m_numVerticesCopied + args.m_numVerticesRemaining; btVector3* verticesReceived = (btVector3*)&m_data->m_bulletStreamDataServerToClient[0]; m_data->m_cachedVertexPositions.resize(args.m_startingVertex + args.m_numVerticesCopied); for (int i = 0; i < args.m_numVerticesCopied; i++) { m_data->m_cachedVertexPositions[i + args.m_startingVertex].x = verticesReceived[i].x(); m_data->m_cachedVertexPositions[i + args.m_startingVertex].y = verticesReceived[i].y(); m_data->m_cachedVertexPositions[i + args.m_startingVertex].z = verticesReceived[i].z(); m_data->m_cachedVertexPositions[i + args.m_startingVertex].w = verticesReceived[i].w(); } if (args.m_numVerticesRemaining > 0 && args.m_numVerticesCopied) { m_data->m_hasStatus = false; // continue requesting remaining vertices command.m_type = CMD_REQUEST_MESH_DATA; command.m_requestMeshDataArgs.m_startingVertex = args.m_startingVertex + args.m_numVerticesCopied; } else { m_data->m_cachedMeshData.m_numVertices = args.m_startingVertex + args.m_numVerticesCopied; } } } while (serverCmd.m_sendMeshDataArgs.m_numVerticesRemaining > 0 && serverCmd.m_sendMeshDataArgs.m_numVerticesCopied); return m_data->m_hasStatus; } void PhysicsDirect::processBodyJointInfo(int bodyUniqueId, const SharedMemoryStatus& serverCmd) { BodyJointInfoCache2** cachePtr = m_data->m_bodyJointMap[bodyUniqueId]; //don't process same bodyUniqueId multiple times if (cachePtr) { return; } bParse::btBulletFile bf( &m_data->m_bulletStreamDataServerToClient[0], serverCmd.m_numDataStreamBytes); if (m_data->m_serverDNA.size()) { bf.setFileDNA(false, &m_data->m_serverDNA[0], m_data->m_serverDNA.size()); } else { bf.setFileDNAisMemoryDNA(); } { BT_PROFILE("bf.parse"); bf.parse(false); } BodyJointInfoCache2* bodyJoints = new BodyJointInfoCache2; m_data->m_bodyJointMap.insert(bodyUniqueId, bodyJoints); bodyJoints->m_bodyName = serverCmd.m_dataStreamArguments.m_bodyName; for (int i = 0; i < bf.m_multiBodies.size(); i++) { int flag = bf.getFlags(); if ((flag & bParse::FD_DOUBLE_PRECISION) != 0) { Bullet::btMultiBodyDoubleData* mb = (Bullet::btMultiBodyDoubleData*)bf.m_multiBodies[i]; if (mb->m_baseName) { bodyJoints->m_baseName = mb->m_baseName; } addJointInfoFromMultiBodyData(mb, bodyJoints, m_data->m_verboseOutput); } else { Bullet::btMultiBodyFloatData* mb = (Bullet::btMultiBodyFloatData*)bf.m_multiBodies[i]; if (mb->m_baseName) { bodyJoints->m_baseName = mb->m_baseName; } addJointInfoFromMultiBodyData(mb, bodyJoints, m_data->m_verboseOutput); } } if (bf.ok()) { if (m_data->m_verboseOutput) { b3Printf("Received robot description ok!\n"); } } else { b3Warning("Robot description not received"); } } void PhysicsDirect::processAddUserData(const struct SharedMemoryStatus& serverCmd) { const UserDataResponseArgs response = serverCmd.m_userDataResponseArgs; BodyJointInfoCache2** bodyJointsPtr = m_data->m_bodyJointMap[response.m_bodyUniqueId]; if (bodyJointsPtr && *bodyJointsPtr) { const char* dataStream = m_data->m_bulletStreamDataServerToClient; SharedMemoryUserData* userData = m_data->m_userDataMap[response.m_userDataId]; if (userData) { // Only replace the value. userData->replaceValue(dataStream, response.m_valueLength, response.m_valueType); } else { // Add a new user data entry. const char* key = response.m_key; m_data->m_userDataMap.insert(response.m_userDataId, SharedMemoryUserData(key, response.m_bodyUniqueId, response.m_linkIndex, response.m_visualShapeIndex)); userData = m_data->m_userDataMap[response.m_userDataId]; userData->replaceValue(dataStream, response.m_valueLength, response.m_valueType); m_data->m_userDataHandleLookup.insert(SharedMemoryUserDataHashKey(userData), response.m_userDataId); (*bodyJointsPtr)->m_userDataIds.push_back(response.m_userDataId); } } } void PhysicsDirect::postProcessStatus(const struct SharedMemoryStatus& serverCmd) { switch (serverCmd.m_type) { case CMD_REQUEST_RAY_CAST_INTERSECTIONS_COMPLETED: { if (m_data->m_verboseOutput) { b3Printf("Raycast completed"); } m_data->m_raycastHits.clear(); b3RayHitInfo* rayHits = (b3RayHitInfo*)m_data->m_bulletStreamDataServerToClient; for (int i = 0; i < serverCmd.m_raycastHits.m_numRaycastHits; i++) { m_data->m_raycastHits.push_back(rayHits[i]); } break; } case CMD_REQUEST_VR_EVENTS_DATA_COMPLETED: { if (m_data->m_verboseOutput) { b3Printf("Request VR Events completed"); } m_data->m_cachedVREvents.resize(serverCmd.m_sendVREvents.m_numVRControllerEvents); for (int i = 0; i < serverCmd.m_sendVREvents.m_numVRControllerEvents; i++) { m_data->m_cachedVREvents[i] = serverCmd.m_sendVREvents.m_controllerEvents[i]; } break; } case CMD_REQUEST_KEYBOARD_EVENTS_DATA_COMPLETED: { if (m_data->m_verboseOutput) { b3Printf("Request keyboard events completed"); } m_data->m_cachedKeyboardEvents.resize(serverCmd.m_sendKeyboardEvents.m_numKeyboardEvents); for (int i = 0; i < serverCmd.m_sendKeyboardEvents.m_numKeyboardEvents; i++) { m_data->m_cachedKeyboardEvents[i] = serverCmd.m_sendKeyboardEvents.m_keyboardEvents[i]; } break; } case CMD_REQUEST_MOUSE_EVENTS_DATA_COMPLETED: { B3_PROFILE("CMD_REQUEST_MOUSE_EVENTS_DATA_COMPLETED"); if (m_data->m_verboseOutput) { b3Printf("Request mouse events completed"); } m_data->m_cachedMouseEvents.resize(serverCmd.m_sendMouseEvents.m_numMouseEvents); for (int i = 0; i < serverCmd.m_sendMouseEvents.m_numMouseEvents; i++) { m_data->m_cachedMouseEvents[i] = serverCmd.m_sendMouseEvents.m_mouseEvents[i]; } break; } case CMD_REQUEST_INTERNAL_DATA_COMPLETED: { if (serverCmd.m_numDataStreamBytes) { int numStreamBytes = serverCmd.m_numDataStreamBytes; m_data->m_serverDNA.resize(numStreamBytes); for (int i = 0; i < numStreamBytes; i++) { m_data->m_serverDNA[i] = m_data->m_bulletStreamDataServerToClient[i]; } } break; } case CMD_RESET_SIMULATION_COMPLETED: { resetData(); break; } case CMD_USER_CONSTRAINT_INFO_COMPLETED: case CMD_USER_CONSTRAINT_COMPLETED: { int cid = serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId; m_data->m_userConstraintInfoMap.insert(cid, serverCmd.m_userConstraintResultArgs); break; } case CMD_REMOVE_USER_CONSTRAINT_COMPLETED: { int cid = serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId; m_data->m_userConstraintInfoMap.remove(cid); break; } case CMD_REMOVE_BODY_FAILED: { b3Warning("Remove body failed\n"); break; } case CMD_REMOVE_BODY_COMPLETED: { for (int i = 0; i < serverCmd.m_removeObjectArgs.m_numBodies; i++) { int bodyUniqueId = serverCmd.m_removeObjectArgs.m_bodyUniqueIds[i]; removeCachedBody(bodyUniqueId); } for (int i = 0; i < serverCmd.m_removeObjectArgs.m_numUserConstraints; i++) { int key = serverCmd.m_removeObjectArgs.m_userConstraintUniqueIds[i]; m_data->m_userConstraintInfoMap.remove(key); } break; } case CMD_CHANGE_USER_CONSTRAINT_COMPLETED: { int cid = serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId; b3UserConstraint* userConstraintPtr = m_data->m_userConstraintInfoMap[cid]; if (userConstraintPtr) { const b3UserConstraint* serverConstraint = &serverCmd.m_userConstraintResultArgs; if (serverCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_PIVOT_IN_B) { userConstraintPtr->m_childFrame[0] = serverConstraint->m_childFrame[0]; userConstraintPtr->m_childFrame[1] = serverConstraint->m_childFrame[1]; userConstraintPtr->m_childFrame[2] = serverConstraint->m_childFrame[2]; } if (serverCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_FRAME_ORN_IN_B) { userConstraintPtr->m_childFrame[3] = serverConstraint->m_childFrame[3]; userConstraintPtr->m_childFrame[4] = serverConstraint->m_childFrame[4]; userConstraintPtr->m_childFrame[5] = serverConstraint->m_childFrame[5]; userConstraintPtr->m_childFrame[6] = serverConstraint->m_childFrame[6]; } if (serverCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_MAX_FORCE) { userConstraintPtr->m_maxAppliedForce = serverConstraint->m_maxAppliedForce; } if (serverCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_GEAR_RATIO) { userConstraintPtr->m_gearRatio = serverConstraint->m_gearRatio; } if (serverCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_RELATIVE_POSITION_TARGET) { userConstraintPtr->m_relativePositionTarget = serverConstraint->m_relativePositionTarget; } if (serverCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_ERP) { userConstraintPtr->m_erp = serverConstraint->m_erp; } if (serverCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_GEAR_AUX_LINK) { userConstraintPtr->m_gearAuxLink = serverConstraint->m_gearAuxLink; } } break; } case CMD_USER_CONSTRAINT_REQUEST_STATE_COMPLETED: { break; } case CMD_SYNC_BODY_INFO_COMPLETED: case CMD_MJCF_LOADING_COMPLETED: case CMD_SDF_LOADING_COMPLETED: { //we'll stream further info from the physics server //so serverCmd will be invalid, make a copy btAlignedObjectArray bodyIdArray; btAlignedObjectArray constraintIdArray; int numConstraints = serverCmd.m_sdfLoadedArgs.m_numUserConstraints; int numBodies = serverCmd.m_sdfLoadedArgs.m_numBodies; bodyIdArray.reserve(numBodies); constraintIdArray.reserve(numConstraints); if (serverCmd.m_type == CMD_SYNC_BODY_INFO_COMPLETED) { clearCachedBodies(); const int* bodyIds = (int*)m_data->m_bulletStreamDataServerToClient; const int* constaintIds = bodyIds + numBodies; for (int i = 0; i < numConstraints; i++) { int constraintUid = constaintIds[i]; constraintIdArray.push_back(constraintUid); } for (int i = 0; i < numBodies; i++) { int bodyUid = bodyIds[i]; bodyIdArray.push_back(bodyUid); } } else { for (int i = 0; i < numConstraints; i++) { int constraintUid = serverCmd.m_sdfLoadedArgs.m_userConstraintUniqueIds[i]; constraintIdArray.push_back(constraintUid); } for (int i = 0; i < numBodies; i++) { int bodyUid = serverCmd.m_sdfLoadedArgs.m_bodyUniqueIds[i]; bodyIdArray.push_back(bodyUid); } } for (int i = 0; i < numConstraints; i++) { int constraintUid = constraintIdArray[i]; m_data->m_tmpInfoRequestCommand.m_type = CMD_USER_CONSTRAINT; m_data->m_tmpInfoRequestCommand.m_updateFlags = USER_CONSTRAINT_REQUEST_INFO; m_data->m_tmpInfoRequestCommand.m_userConstraintArguments.m_userConstraintUniqueId = constraintUid; bool hasStatus = m_data->m_commandProcessor->processCommand(m_data->m_tmpInfoRequestCommand, m_data->m_tmpInfoStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE); b3Clock clock; double startTime = clock.getTimeInSeconds(); double timeOutInSeconds = m_data->m_timeOutInSeconds; while ((!hasStatus) && (clock.getTimeInSeconds() - startTime < timeOutInSeconds)) { hasStatus = m_data->m_commandProcessor->receiveStatus(m_data->m_tmpInfoStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE); } if (hasStatus) { int cid = m_data->m_tmpInfoStatus.m_userConstraintResultArgs.m_userConstraintUniqueId; m_data->m_userConstraintInfoMap.insert(cid, m_data->m_tmpInfoStatus.m_userConstraintResultArgs); } } for (int i = 0; i < numBodies; i++) { int bodyUniqueId = bodyIdArray[i]; m_data->m_tmpInfoRequestCommand.m_type = CMD_REQUEST_BODY_INFO; m_data->m_tmpInfoRequestCommand.m_sdfRequestInfoArgs.m_bodyUniqueId = bodyUniqueId; bool hasStatus = m_data->m_commandProcessor->processCommand(m_data->m_tmpInfoRequestCommand, m_data->m_tmpInfoStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE); b3Clock clock; double startTime = clock.getTimeInSeconds(); double timeOutInSeconds = m_data->m_timeOutInSeconds; while ((!hasStatus) && (clock.getTimeInSeconds() - startTime < timeOutInSeconds)) { hasStatus = m_data->m_commandProcessor->receiveStatus(m_data->m_tmpInfoStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE); } if (hasStatus) { processBodyJointInfo(bodyUniqueId, m_data->m_tmpInfoStatus); } } break; } case CMD_CREATE_MULTI_BODY_COMPLETED: case CMD_URDF_LOADING_COMPLETED: { if (serverCmd.m_numDataStreamBytes > 0) { int bodyIndex = serverCmd.m_dataStreamArguments.m_bodyUniqueId; processBodyJointInfo(bodyIndex, serverCmd); } break; } case CMD_BULLET_LOADING_FAILED: { b3Warning("Couldn't load .bullet file"); break; } case CMD_BULLET_LOADING_COMPLETED: { break; } case CMD_REQUEST_OPENGL_VISUALIZER_CAMERA_COMPLETED: { break; } case CMD_REQUEST_OPENGL_VISUALIZER_CAMERA_FAILED: { //b3Warning("requestOpenGLVisualizeCamera failed"); break; } case CMD_REMOVE_USER_CONSTRAINT_FAILED: { b3Warning("removeConstraint failed"); break; } case CMD_CHANGE_USER_CONSTRAINT_FAILED: { //b3Warning("changeConstraint failed"); break; } case CMD_USER_CONSTRAINT_FAILED: { b3Warning("createConstraint failed"); break; } case CMD_CREATE_COLLISION_SHAPE_FAILED: { b3Warning("createCollisionShape failed"); break; } case CMD_CREATE_COLLISION_SHAPE_COMPLETED: { break; } case CMD_CREATE_VISUAL_SHAPE_FAILED: { b3Warning("createVisualShape failed"); break; } case CMD_CREATE_VISUAL_SHAPE_COMPLETED: { break; } case CMD_CREATE_MULTI_BODY_FAILED: { b3Warning("createMultiBody failed"); break; } case CMD_REQUEST_COLLISION_INFO_COMPLETED: { break; } case CMD_REQUEST_COLLISION_INFO_FAILED: { b3Warning("Request getCollisionInfo failed"); break; } case CMD_REQUEST_MESH_DATA_COMPLETED: { break; } case CMD_REQUEST_MESH_DATA_FAILED: { b3Warning("Request mesh data failed"); break; } case CMD_CUSTOM_COMMAND_FAILED: { b3Warning("custom plugin command failed"); break; } case CMD_CLIENT_COMMAND_COMPLETED: { break; } case CMD_CALCULATED_JACOBIAN_COMPLETED: { break; } case CMD_CALCULATED_JACOBIAN_FAILED: { b3Warning("jacobian calculation failed"); break; } case CMD_CALCULATED_MASS_MATRIX_FAILED: { b3Warning("calculate mass matrix failed"); break; } case CMD_CALCULATED_MASS_MATRIX_COMPLETED: { double* matrixData = (double*)&m_data->m_bulletStreamDataServerToClient[0]; m_data->m_cachedMassMatrix.resize(serverCmd.m_massMatrixResultArgs.m_dofCount * serverCmd.m_massMatrixResultArgs.m_dofCount); for (int i = 0; i < serverCmd.m_massMatrixResultArgs.m_dofCount * serverCmd.m_massMatrixResultArgs.m_dofCount; i++) { m_data->m_cachedMassMatrix[i] = matrixData[i]; } break; } case CMD_ACTUAL_STATE_UPDATE_COMPLETED: { SendActualStateSharedMemoryStorage* serverState = (SendActualStateSharedMemoryStorage*)&m_data->m_bulletStreamDataServerToClient[0]; m_data->m_cachedState = *serverState; m_data->m_serverStatus.m_sendActualStateArgs.m_stateDetails = &m_data->m_cachedState; break; } case CMD_DESIRED_STATE_RECEIVED_COMPLETED: { break; } case CMD_STEP_FORWARD_SIMULATION_COMPLETED: { break; } case CMD_REQUEST_PHYSICS_SIMULATION_PARAMETERS_COMPLETED: { break; } case CMD_SAVE_STATE_COMPLETED: { break; } case CMD_COLLISION_SHAPE_INFO_FAILED: { b3Warning("getCollisionShapeData failed"); break; } case CMD_COLLISION_SHAPE_INFO_COMPLETED: { B3_PROFILE("CMD_COLLISION_SHAPE_INFO_COMPLETED"); if (m_data->m_verboseOutput) { b3Printf("Collision Shape Information Request OK\n"); } int numCollisionShapesCopied = serverCmd.m_sendCollisionShapeArgs.m_numCollisionShapes; m_data->m_cachedCollisionShapes.resize(numCollisionShapesCopied); b3CollisionShapeData* shapeData = (b3CollisionShapeData*)&m_data->m_bulletStreamDataServerToClient[0]; for (int i = 0; i < numCollisionShapesCopied; i++) { m_data->m_cachedCollisionShapes[i] = shapeData[i]; } break; } case CMD_RESTORE_STATE_FAILED: { b3Warning("restoreState failed"); break; } case CMD_RESTORE_STATE_COMPLETED: { break; } case CMD_BULLET_SAVING_COMPLETED: { break; } case CMD_LOAD_SOFT_BODY_FAILED: { b3Warning("loadSoftBody failed"); break; } case CMD_LOAD_SOFT_BODY_COMPLETED: { int bodyUniqueId = serverCmd.m_loadSoftBodyResultArguments.m_objectUniqueId; BodyJointInfoCache2* bodyJoints = new BodyJointInfoCache2; m_data->m_bodyJointMap.insert(bodyUniqueId, bodyJoints); bodyJoints->m_bodyName = serverCmd.m_dataStreamArguments.m_bodyName; bodyJoints->m_baseName = serverCmd.m_dataStreamArguments.m_bodyName; break; } case CMD_SYNC_USER_DATA_FAILED: { b3Warning("Synchronizing user data failed."); break; } case CMD_ADD_USER_DATA_FAILED: { b3Warning("Adding user data failed (do the specified body and link exist?)"); break; } case CMD_REMOVE_USER_DATA_FAILED: { b3Warning("Removing user data failed"); break; } case CMD_ADD_USER_DATA_COMPLETED: { processAddUserData(serverCmd); break; } case CMD_SYNC_USER_DATA_COMPLETED: { B3_PROFILE("CMD_SYNC_USER_DATA_COMPLETED"); if (serverCmd.m_syncUserDataArgs.m_clearCachedUserDataEntries) { // Remove all cached user data entries. m_data->m_userDataMap.clear(); m_data->m_userDataHandleLookup.clear(); for (int i = 0; i < m_data->m_bodyJointMap.size(); i++) { BodyJointInfoCache2** bodyJointsPtr = m_data->m_bodyJointMap.getAtIndex(i); if (bodyJointsPtr && *bodyJointsPtr) { (*bodyJointsPtr)->m_userDataIds.clear(); } } } const int numIdentifiers = serverCmd.m_syncUserDataArgs.m_numUserDataIdentifiers; int* identifiers = new int[numIdentifiers]; memcpy(identifiers, &m_data->m_bulletStreamDataServerToClient[0], numIdentifiers * sizeof(int)); for (int i = 0; i < numIdentifiers; i++) { m_data->m_tmpInfoRequestCommand.m_type = CMD_REQUEST_USER_DATA; m_data->m_tmpInfoRequestCommand.m_userDataRequestArgs.m_userDataId = identifiers[i]; bool hasStatus = m_data->m_commandProcessor->processCommand(m_data->m_tmpInfoRequestCommand, m_data->m_tmpInfoStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE); b3Clock clock; double startTime = clock.getTimeInSeconds(); double timeOutInSeconds = m_data->m_timeOutInSeconds; while ((!hasStatus) && (clock.getTimeInSeconds() - startTime < timeOutInSeconds)) { hasStatus = m_data->m_commandProcessor->receiveStatus(m_data->m_tmpInfoStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE); } if (hasStatus) { processAddUserData(m_data->m_tmpInfoStatus); } } delete[] identifiers; break; } case CMD_REMOVE_USER_DATA_COMPLETED: { const int userDataId = serverCmd.m_removeUserDataResponseArgs.m_userDataId; SharedMemoryUserData* userData = m_data->m_userDataMap[userDataId]; if (userData) { BodyJointInfoCache2** bodyJointsPtr = m_data->m_bodyJointMap[userData->m_bodyUniqueId]; if (bodyJointsPtr && *bodyJointsPtr) { (*bodyJointsPtr)->m_userDataIds.remove(userDataId); } m_data->m_userDataHandleLookup.remove(SharedMemoryUserDataHashKey(userData)); m_data->m_userDataMap.remove(userDataId); } break; } case CMD_REMOVE_STATE_FAILED: { break; } case CMD_REMOVE_STATE_COMPLETED: { break; } case CMD_CUSTOM_COMMAND_COMPLETED: { break; } default: { //b3Warning("Unknown server status type"); } }; } bool PhysicsDirect::processCustomCommand(const struct SharedMemoryCommand& orgCommand) { SharedMemoryCommand command = orgCommand; const SharedMemoryStatus& serverCmd = m_data->m_serverStatus; int remaining = 0; do { bool hasStatus = m_data->m_commandProcessor->processCommand(command, m_data->m_serverStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE); b3Clock clock; double startTime = clock.getTimeInSeconds(); double timeOutInSeconds = m_data->m_timeOutInSeconds; while ((!hasStatus) && (clock.getTimeInSeconds() - startTime < timeOutInSeconds)) { const SharedMemoryStatus* stat = processServerStatus(); if (stat) { hasStatus = true; } } m_data->m_hasStatus = hasStatus; if (hasStatus) { if (m_data->m_verboseOutput) { b3Printf("Success receiving %d return data\n", serverCmd.m_numDataStreamBytes); } btAssert(m_data->m_serverStatus.m_type == CMD_CUSTOM_COMMAND_COMPLETED); if (m_data->m_serverStatus.m_type == CMD_CUSTOM_COMMAND_COMPLETED) { m_data->m_cachedReturnData.resize(serverCmd.m_customCommandResultArgs.m_returnDataSizeInBytes); m_data->m_cachedReturnDataValue.m_length = serverCmd.m_customCommandResultArgs.m_returnDataSizeInBytes; if (serverCmd.m_customCommandResultArgs.m_returnDataSizeInBytes) { m_data->m_cachedReturnDataValue.m_type = serverCmd.m_customCommandResultArgs.m_returnDataType; m_data->m_cachedReturnDataValue.m_data1 = &m_data->m_cachedReturnData[0]; for (int i = 0; i < serverCmd.m_numDataStreamBytes; i++) { m_data->m_cachedReturnData[i+ serverCmd.m_customCommandResultArgs.m_returnDataStart] = m_data->m_bulletStreamDataServerToClient[i]; } } int totalReceived = serverCmd.m_numDataStreamBytes + serverCmd.m_customCommandResultArgs.m_returnDataStart; remaining = serverCmd.m_customCommandResultArgs.m_returnDataSizeInBytes - totalReceived; if (remaining > 0) { m_data->m_hasStatus = false; command.m_type = CMD_CUSTOM_COMMAND; command.m_customCommandArgs.m_startingReturnBytes = totalReceived; } } } } while (remaining > 0); return m_data->m_hasStatus; } bool PhysicsDirect::submitClientCommand(const struct SharedMemoryCommand& command) { if (command.m_type == CMD_CUSTOM_COMMAND) { return processCustomCommand(command); } if (command.m_type == CMD_REQUEST_DEBUG_LINES) { return processDebugLines(command); } if (command.m_type == CMD_REQUEST_CAMERA_IMAGE_DATA) { return processCamera(command); } if (command.m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION) { return processContactPointData(command); } if (command.m_type == CMD_REQUEST_VISUAL_SHAPE_INFO) { return processVisualShapeData(command); } if (command.m_type == CMD_REQUEST_AABB_OVERLAP) { return processOverlappingObjects(command); } if (command.m_type == CMD_REQUEST_MESH_DATA) { return processMeshData(command); } bool hasStatus = m_data->m_commandProcessor->processCommand(command, m_data->m_serverStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE); m_data->m_hasStatus = hasStatus; if (m_data->m_ownsCommandProcessor) { m_data->m_commandProcessor->reportNotifications(); } /*if (hasStatus) { postProcessStatus(m_data->m_serverStatus); m_data->m_hasStatus = false; } */ return hasStatus; } int PhysicsDirect::getNumBodies() const { return m_data->m_bodyJointMap.size(); } void PhysicsDirect::removeCachedBody(int bodyUniqueId) { BodyJointInfoCache2** bodyJointsPtr = m_data->m_bodyJointMap[bodyUniqueId]; if (bodyJointsPtr && *bodyJointsPtr) { for (int i = 0; i < (*bodyJointsPtr)->m_userDataIds.size(); i++) { const int userDataId = (*bodyJointsPtr)->m_userDataIds[i]; SharedMemoryUserData* userData = m_data->m_userDataMap[userDataId]; m_data->m_userDataHandleLookup.remove(SharedMemoryUserDataHashKey(userData)); m_data->m_userDataMap.remove(userDataId); } delete (*bodyJointsPtr); m_data->m_bodyJointMap.remove(bodyUniqueId); } } int PhysicsDirect::getNumUserConstraints() const { return m_data->m_userConstraintInfoMap.size(); } int PhysicsDirect::getUserConstraintInfo(int constraintUniqueId, struct b3UserConstraint& info) const { b3UserConstraint* constraintPtr = m_data->m_userConstraintInfoMap[constraintUniqueId]; if (constraintPtr) { info = *constraintPtr; return 1; } return 0; } int PhysicsDirect::getUserConstraintId(int serialIndex) const { if ((serialIndex >= 0) && (serialIndex < getNumUserConstraints())) { return m_data->m_userConstraintInfoMap.getKeyAtIndex(serialIndex).getUid1(); } return -1; } int PhysicsDirect::getBodyUniqueId(int serialIndex) const { if ((serialIndex >= 0) && (serialIndex < getNumBodies())) { return m_data->m_bodyJointMap.getKeyAtIndex(serialIndex).getUid1(); } return -1; } bool PhysicsDirect::getBodyInfo(int bodyUniqueId, struct b3BodyInfo& info) const { BodyJointInfoCache2** bodyJointsPtr = m_data->m_bodyJointMap[bodyUniqueId]; if (bodyJointsPtr && *bodyJointsPtr) { BodyJointInfoCache2* bodyJoints = *bodyJointsPtr; strcpy(info.m_baseName, bodyJoints->m_baseName.c_str()); strcpy(info.m_bodyName, bodyJoints->m_bodyName.c_str()); return true; } return false; } int PhysicsDirect::getNumJoints(int bodyUniqueId) const { BodyJointInfoCache2** bodyJointsPtr = m_data->m_bodyJointMap[bodyUniqueId]; if (bodyJointsPtr && *bodyJointsPtr) { BodyJointInfoCache2* bodyJoints = *bodyJointsPtr; return bodyJoints->m_jointInfo.size(); } btAssert(0); return 0; } int PhysicsDirect::getNumDofs(int bodyUniqueId) const { BodyJointInfoCache2** bodyJointsPtr = m_data->m_bodyJointMap[bodyUniqueId]; if (bodyJointsPtr && *bodyJointsPtr) { BodyJointInfoCache2* bodyJoints = *bodyJointsPtr; return bodyJoints->m_numDofs; } btAssert(0); return 0; } bool PhysicsDirect::getJointInfo(int bodyIndex, int jointIndex, struct b3JointInfo& info) const { BodyJointInfoCache2** bodyJointsPtr = m_data->m_bodyJointMap[bodyIndex]; if (bodyJointsPtr && *bodyJointsPtr) { BodyJointInfoCache2* bodyJoints = *bodyJointsPtr; if ((jointIndex >= 0) && (jointIndex < bodyJoints->m_jointInfo.size())) { info = bodyJoints->m_jointInfo[jointIndex]; info.m_qSize = 0; info.m_uSize = 0; switch (info.m_jointType) { case eSphericalType: { info.m_qSize = 4;//quaterion x,y,z,w info.m_uSize = 3; break; } case ePlanarType: { info.m_qSize = 2; info.m_uSize = 2; break; } case ePrismaticType: case eRevoluteType: { info.m_qSize = 1; info.m_uSize = 1; break; } default: { } } return true; } } return false; } void PhysicsDirect::setSharedMemoryKey(int key) { } void PhysicsDirect::uploadBulletFileToSharedMemory(const char* data, int len) { if (len > SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE) { len = SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE; } for (int i = 0; i < len; i++) { m_data->m_bulletStreamDataServerToClient[i] = data[i]; } //m_data->m_physicsClient->uploadBulletFileToSharedMemory(data,len); } void PhysicsDirect::uploadRaysToSharedMemory(struct SharedMemoryCommand& command, const double* rayFromWorldArray, const double* rayToWorldArray, int numRays) { int curNumStreamingRays = command.m_requestRaycastIntersections.m_numStreamingRays; int newNumRays = curNumStreamingRays + numRays; btAssert(newNumRays < MAX_RAY_INTERSECTION_BATCH_SIZE_STREAMING); if (newNumRays < MAX_RAY_INTERSECTION_BATCH_SIZE_STREAMING) { for (int i = 0; i < numRays; i++) { b3RayData* rayDataStream = (b3RayData*)m_data->m_bulletStreamDataServerToClient; rayDataStream[curNumStreamingRays + i].m_rayFromPosition[0] = rayFromWorldArray[i * 3 + 0]; rayDataStream[curNumStreamingRays + i].m_rayFromPosition[1] = rayFromWorldArray[i * 3 + 1]; rayDataStream[curNumStreamingRays + i].m_rayFromPosition[2] = rayFromWorldArray[i * 3 + 2]; rayDataStream[curNumStreamingRays + i].m_rayToPosition[0] = rayToWorldArray[i * 3 + 0]; rayDataStream[curNumStreamingRays + i].m_rayToPosition[1] = rayToWorldArray[i * 3 + 1]; rayDataStream[curNumStreamingRays + i].m_rayToPosition[2] = rayToWorldArray[i * 3 + 2]; command.m_requestRaycastIntersections.m_numStreamingRays++; } } } int PhysicsDirect::getNumDebugLines() const { return m_data->m_debugLinesFrom.size(); } const float* PhysicsDirect::getDebugLinesFrom() const { if (getNumDebugLines()) { return &m_data->m_debugLinesFrom[0].m_x; } return 0; } const float* PhysicsDirect::getDebugLinesTo() const { if (getNumDebugLines()) { return &m_data->m_debugLinesTo[0].m_x; } return 0; } const float* PhysicsDirect::getDebugLinesColor() const { if (getNumDebugLines()) { return &m_data->m_debugLinesColor[0].m_x; } return 0; } void PhysicsDirect::getCachedCameraImage(b3CameraImageData* cameraData) { if (cameraData) { cameraData->m_pixelWidth = m_data->m_cachedCameraPixelsWidth; cameraData->m_pixelHeight = m_data->m_cachedCameraPixelsHeight; cameraData->m_depthValues = m_data->m_cachedCameraDepthBuffer.size() ? &m_data->m_cachedCameraDepthBuffer[0] : 0; cameraData->m_rgbColorData = m_data->m_cachedCameraPixelsRGBA.size() ? &m_data->m_cachedCameraPixelsRGBA[0] : 0; cameraData->m_segmentationMaskValues = m_data->m_cachedSegmentationMask.size() ? &m_data->m_cachedSegmentationMask[0] : 0; } } void PhysicsDirect::getCachedMeshData(struct b3MeshData* meshData) { m_data->m_cachedMeshData.m_numVertices = m_data->m_cachedVertexPositions.size(); m_data->m_cachedMeshData.m_vertices = m_data->m_cachedMeshData.m_numVertices ? &m_data->m_cachedVertexPositions[0] : 0; *meshData = m_data->m_cachedMeshData; } void PhysicsDirect::getCachedContactPointInformation(struct b3ContactInformation* contactPointData) { contactPointData->m_numContactPoints = m_data->m_cachedContactPoints.size(); contactPointData->m_contactPointData = contactPointData->m_numContactPoints ? &m_data->m_cachedContactPoints[0] : 0; } void PhysicsDirect::getCachedOverlappingObjects(struct b3AABBOverlapData* overlappingObjects) { overlappingObjects->m_numOverlappingObjects = m_data->m_cachedOverlappingObjects.size(); overlappingObjects->m_overlappingObjects = m_data->m_cachedOverlappingObjects.size() ? &m_data->m_cachedOverlappingObjects[0] : 0; } void PhysicsDirect::getCachedVisualShapeInformation(struct b3VisualShapeInformation* visualShapesInfo) { visualShapesInfo->m_numVisualShapes = m_data->m_cachedVisualShapes.size(); visualShapesInfo->m_visualShapeData = visualShapesInfo->m_numVisualShapes ? &m_data->m_cachedVisualShapes[0] : 0; } void PhysicsDirect::getCachedCollisionShapeInformation(struct b3CollisionShapeInformation* collisionShapesInfo) { collisionShapesInfo->m_numCollisionShapes = m_data->m_cachedCollisionShapes.size(); collisionShapesInfo->m_collisionShapeData = collisionShapesInfo->m_numCollisionShapes ? &m_data->m_cachedCollisionShapes[0] : 0; } void PhysicsDirect::getCachedVREvents(struct b3VREventsData* vrEventsData) { vrEventsData->m_numControllerEvents = m_data->m_cachedVREvents.size(); vrEventsData->m_controllerEvents = vrEventsData->m_numControllerEvents ? &m_data->m_cachedVREvents[0] : 0; } void PhysicsDirect::getCachedKeyboardEvents(struct b3KeyboardEventsData* keyboardEventsData) { keyboardEventsData->m_numKeyboardEvents = m_data->m_cachedKeyboardEvents.size(); keyboardEventsData->m_keyboardEvents = keyboardEventsData->m_numKeyboardEvents ? &m_data->m_cachedKeyboardEvents[0] : 0; } void PhysicsDirect::getCachedMouseEvents(struct b3MouseEventsData* mouseEventsData) { mouseEventsData->m_numMouseEvents = m_data->m_cachedMouseEvents.size(); mouseEventsData->m_mouseEvents = mouseEventsData->m_numMouseEvents ? &m_data->m_cachedMouseEvents[0] : 0; } void PhysicsDirect::getCachedRaycastHits(struct b3RaycastInformation* raycastHits) { raycastHits->m_numRayHits = m_data->m_raycastHits.size(); raycastHits->m_rayHits = raycastHits->m_numRayHits ? &m_data->m_raycastHits[0] : 0; } void PhysicsDirect::getCachedMassMatrix(int dofCountCheck, double* massMatrix) { int sz = dofCountCheck * dofCountCheck; if (sz == m_data->m_cachedMassMatrix.size()) { for (int i = 0; i < sz; i++) { massMatrix[i] = m_data->m_cachedMassMatrix[i]; } } } bool PhysicsDirect::getCachedReturnData(b3UserDataValue* returnData) { if (m_data->m_cachedReturnDataValue.m_length) { *returnData = m_data->m_cachedReturnDataValue; return true; } return false; } void PhysicsDirect::setTimeOut(double timeOutInSeconds) { m_data->m_timeOutInSeconds = timeOutInSeconds; } double PhysicsDirect::getTimeOut() const { return m_data->m_timeOutInSeconds; } bool PhysicsDirect::getCachedUserData(int userDataId, struct b3UserDataValue& valueOut) const { SharedMemoryUserData* userDataPtr = m_data->m_userDataMap[userDataId]; if (!userDataPtr) { return false; } valueOut.m_type = (userDataPtr)->m_type; valueOut.m_length = userDataPtr->m_bytes.size(); valueOut.m_data1 = userDataPtr->m_bytes.size() ? &userDataPtr->m_bytes[0] : 0; return true; } int PhysicsDirect::getCachedUserDataId(int bodyUniqueId, int linkIndex, int visualShapeIndex, const char* key) const { int* userDataId = m_data->m_userDataHandleLookup.find(SharedMemoryUserDataHashKey(key, bodyUniqueId, linkIndex, visualShapeIndex)); if (!userDataId) { return -1; } return *userDataId; } int PhysicsDirect::getNumUserData(int bodyUniqueId) const { BodyJointInfoCache2** bodyJointsPtr = m_data->m_bodyJointMap[bodyUniqueId]; if (!bodyJointsPtr || !(*bodyJointsPtr)) { return 0; } return (*bodyJointsPtr)->m_userDataIds.size(); } void PhysicsDirect::getUserDataInfo(int bodyUniqueId, int userDataIndex, const char** keyOut, int* userDataIdOut, int* linkIndexOut, int* visualShapeIndexOut) const { BodyJointInfoCache2** bodyJointsPtr = m_data->m_bodyJointMap[bodyUniqueId]; if (!bodyJointsPtr || !(*bodyJointsPtr) || userDataIndex < 0 || userDataIndex > (*bodyJointsPtr)->m_userDataIds.size()) { *keyOut = 0; *userDataIdOut = -1; return; } int userDataId = (*bodyJointsPtr)->m_userDataIds[userDataIndex]; SharedMemoryUserData* userData = m_data->m_userDataMap[userDataId]; *userDataIdOut = userDataId; *keyOut = userData->m_key.c_str(); *linkIndexOut = userData->m_linkIndex; *visualShapeIndexOut = userData->m_visualShapeIndex; } void PhysicsDirect::pushProfileTiming(const char* timingName) { std::string** strPtr = m_data->m_profileTimingStringArray[timingName]; std::string* str = 0; if (strPtr) { str = *strPtr; } else { str = new std::string(timingName); m_data->m_profileTimingStringArray.insert(timingName, str); } m_data->m_profileTimings.push_back(new CProfileSample(str->c_str())); } void PhysicsDirect::popProfileTiming() { if (m_data->m_profileTimings.size()) { CProfileSample* sample = m_data->m_profileTimings[m_data->m_profileTimings.size() - 1]; m_data->m_profileTimings.pop_back(); delete sample; } }